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ABSTRACT 

 

North East Cairo City (NECC), a relatively nascent urban area in Egypt, has experienced rapid 

expansion over recent decades. Understanding the environmental repercussions of land cover 

transformations in such regions has become increasingly paramount. This study investigates the 

intricate relationships between land cover change, NDBI, NDVI, and LST in NECC over twenty 

years (2000–2020) time span. We are employing a temporal series of Landsat imagery, including 

ETM+ and OLI/TIRS data, and sophisticated geospatial methodologies. The satellite imagery is 

classified into five distinct land cover categories: urban areas, bare land, agricultural areas, 

salinized soil, and water bodies. The findings indicate a significant increase in urban/built-up areas 

by approximately 211.2 km², accompanied by a concomitant decrease in bare land and agricultural 

areas by 196.2 km² and 23.9 km², respectively. Notably, the highest LST values were observed in 

bare land areas, escalating from 38–45°C in 2000 to 61–62°C in 2020, and in urban areas, rising 

from 36–37°C in 2000 to 60°C in 2020. The research revealed a pronounced correlation between 

the increase in built-up areas and the observed changes in LST, NDBI, and NDVI. Specifically, 

both NDBI and LST values exhibited an upward trend corresponding with the expansion of built-

up areas. These results underscore the profound impact of urbanization on LST, offering critical 

insights into the consequential shifts in environmental indices. Furthermore, this study provides 

valuable guidance for sustainable urban planning practices in NECC, emphasizing the need for 

strategic interventions to mitigate the adverse effects of rapid urban expansion on the local climate 

and ecosystem. 

Keywords: Geospatial analysis; Land use/Land cover; Land surface temperature; Normalized 

difference built-up index; Normalized difference vegetation index; Urban expansion.  

 
 

INTRODUCTION 

 

In recent years, there has been an intensified focus 

on examining the dynamics of land cover (LC) 

transformations and their intricate interactions with a 

spectrum of biophysical environmental parameters. 

Scholars have meticulously concentrated on pivotal 

biophysical metrics such as land surface temperature 

(LST), normalized difference vegetation index (NDVI), 

and normalized difference built-up index (NDBI). 

These metrics are indispensable for monitoring LC 

alterations and evaluating the reciprocal influences 

between LC practices and climatic variables 

(Alademomi et al., 2020; Guha et al., 2020; Arnous 

and Mansour, 2023). The escalation of anthropogenic 

activities and urban sprawl globally has precipitated 

significant modifications in LC and vegetative patterns, 

thereby perturbing the equilibrium of natural 

ecosystems (Choudhury et al., 2019; Das et al., 2020). 

Human populations have predominantly inhabited 

compact, rural communities. However, recent centuries 

have witnessed a significant demographic shift towards 

urbanization. This process is characterized by the 

growth in population density and spatial extent of 

urban areas, fundamentally transforming land use and 

land cover (LULC) patterns (Pal et al., 2017).  

According to projections by the United Nations, 

urbanization, coupled with the global population 

increase, is expected to add approximately 2.5 billion 

urban residents by 2050, with nearly 90% of this 

growth occurring in Asia and Africa (United Nations, 

2014). The rapid increase in global population and 

economic development has led to significant changes 

in the Earth's land system (Bhanage et al., 2021). These 

LULC changes result from both natural processes and 

anthropogenic activities, reflecting a complex interplay 

that reshapes the Earth's surface. Historically, humans 

have modified landscapes to meet the demands for 

food, shelter, and other necessities. However, the 

current rate, scale, and intensity of these modifications 

are unprecedented (Gebreslassie, 2014; Hassan et al., 

2016; Arnous and Green, 2015; Arnous et al., 2017; 

Lin et al., 2018). These transformations have profound 

impacts on various Earth system processes, including 

climate regulation, biodiversity conservation, 

hydrological cycles, ecosystem stability, forest health, 

and biogeochemical cycles (Jansen and Di Gregorio, 

2002; Were et al., 2014; Lin et al., 2018). A major 

challenge arising from LULC changes is the increase in 

land surface temperatures, a phenomenon extensively 

documented in the literature (Mallick et al., 2008; 

Arnous and Mansour, 2023). 

Land surface temperature (LST) is one of the main 

biophysical metrics for urban health assessments 

(Weng and Xiao, 2007). It is the temperature of the 

land's surface that is obtained from solar radiation 
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(Jaber, 2019). The term refers to the quantification of 

the perceived temperature of the Earth's surface at 

particular locations (Obiefuna et al., 2018), LST 

measurement has great importance in several domains, 

such as climatic variability and change, urban heat 

island influence, land/atmosphere observations, fire 

monitoring, mapping, detection of land cover change, 

geological investigations, agricultural management, 

and water management (Jaber, 2019; Arnous and 

Mansour 2023). LST may provide data on the physical 

attributes of the soil surface and atmospheric 

conditions, together with changes in land use and 

activities by humans that impact the climate (Fathizad 

et al., 2017). Because of the significant variety of 

LULC surfaces such as vegetation, surface roughness, 

topography, and soil, the LST varied fast in space as 

well as in time (Vauclin et al., 1982; Prata et al., 1995; 

Liu et al., 2006; Neteler, 2010). The impervious 

surfaces, such as buildings, roads, and industries, are 

known to serve land use purposes. These surfaces can 

absorb shortwave solar radiation, but they also 

contribute to a reduction in the emission of longwave 

terrestrial radiation. This reduction directly affects the 

LST (Das et al., 2020). The calculation of LST is 

complex because of the surface heterogeneity caused 

by various land cover types and mixed land users. The 

reason for this is that the emissivity of terrestrial 

surfaces exhibits significant variability and may vary 

considerably over short distances (Akinbobola, 2019). 

The different types of land cover have an impact on the 

characteristics and patterns of LST. Guha et al. 2020 

concluded that changes in LST over the seasons are 

mostly influenced by factors such as vegetation and 

temperature. While it is acknowledged that plant cover 

has a mitigating effect on LST, different kinds of 

vegetation might vary in their capacity to lower surface 

temperatures. Trees mitigate surface and air 

temperature by shade, in addition to evapotranspiration 

(Alexander, 2020). 

Furthermore, to understand environmental changes, 

it is critical to conduct efficient monitoring of the 

Normalized Difference Vegetation Index (NDVI), a 

spectral indicator used to identify and measure long-

term variations in vegetation coverage and condition 

(Fathizad et al., 2017).  NDVI, ranging from -1 to +1, 

shows the condition and amount of green plant 

covering and biomass, (Jaber, 2019) states that 

vegetation density and health may be determined by 

higher values approaching 1, whereas values of zero or 

below indicate scant or unhealthy vegetation on the 

ground and non-vegetated surfaces. These technologies 

have been extensively used in monitoring the timing of 

agricultural growth stages, categorizing different types 

of vegetation, and calculating various physical 

characteristics of vegetation.  

The NDVI function values below 0.1 indicate barren 

landscapes consisting of rock, sand, or snow. Shrubs 

and meadows have intermediate values ranging from 

0.2 to 0.3, whereas high values ranging from 0.6 to 0.8 

indicate temperate and tropical forests. This scale is 

effectively used for crop monitoring to indicate to 

farmers the areas of their fields that currently exhibit 

thick, moderate, or sparse vegetation. Research has 

shown a logical correlation between NDVI and LST. 

(Fathizad et al., 2017; Jaber, 2019; Guha et al., 2020; 

Alademomi et al., 2020). 

The Normalized Difference Built-up Index (NDBI) 

is a spectral index that quantifies urbanization and land 

cover changes within a given area. Empirical studies 

have demonstrated a significant correlation between 

NDBI and Land Surface Temperature (LST) 

(Choudhury et al., 2019; Das et al., 2020; Guha et al., 

2020). Higher NDBI values, which range from -1 to 

+1, indicate increased impervious surface coverage, 

while lower values suggest more permeable surfaces. 

Locally, the expansion of built-up or impervious 

regions alters the geometric and physical properties of 

the land surface compared to natural land cover, 

impacting radiation budgets and surface energy 

dynamics (Choudhury et al., 2019). Specifically, 

impervious surfaces such as buildings, roads, and 

industrial sites enhance the absorption of shortwave 

radiation and reduce energy dissipation through 

longwave radiation emission (Choudhury et al., 2019; 

Das et al., 2020). Consequently, these impermeable 

surfaces exhibit higher Land Surface Temperatures 

(LST) compared to their surrounding environments. 

The Normalized Difference Built-up Index (NDBI), 

akin to other spectral indices that quantitatively 

characterize Land Use and Land Cover (LULC) types, 

has been extensively utilized in research investigating 

the relationship between LST and LULC. However, the 

variability in the correlation between LST and NDBI 

across different seasons remains a critical issue. NDBI 

holds significant importance in urban areas 

characterized by high population densities, as it 

provides essential insights into the extent of 

urbanization and its environmental impacts (Xiong et 

al., 2012; Guha et al., 2018). 

Contemporary research has increasingly focused on 

understanding the patterns of land cover change and 

their relationship to various environmental conditions. 

Key environmental indicators, such as LST, NDVI, and 

NDBI, have garnered significant attention (Grigoraș 

and Urițescu, 2019; Jaber, 2019; Guha et al., 2020). 

Numerous studies have elucidated the relationship 

between LST and LULC, consistently revealing that 

changes in LULC, particularly in urban areas, result in 

elevated LST (Weng et al., 2004; Pal and Ziaul, 2017; 

Aboelnour and Engel, 2018). This growing body of 

research highlights the critical need for comprehensive 

analysis and strategic management of land cover 

changes to mitigate their adverse environmental 

impacts. 

The North East of Cairo City (NECC), recognized as 

one of Egypt's most rapidly expanding regions, has 

experienced substantial anthropogenic activities and 

significant land use and land cover (LULC) 

transformations. This growth has led to the reclamation 

of vast areas and the establishment of new urban 

settlements such as El-Salaam, El-Obour, El-Sherouk, 

and Tenth of Ramadan. These developments have 
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precipitated numerous hydrogeological challenges, 

including dramatic alterations in land cover, shifts in 

land surface temperature, soil salinization, reduction in 

vegetative cover, and overall hydro-geoenvironmental 

degradation (Abdel Aleem, 2023; El-Rayes et al., 

2023). The goal of this initiative research is to execute 

the correlations amongst Land Surface Temperature 

(LST), Normalized Difference Vegetation Index 

(NDVI), Normalized Difference Built-up Index 

(NDBI), and alteration in land cover in North East 

Cairo City to provide insights into the urban heat island 

effect, inform environmental monitoring, and support 

sustainable urban planning in Northeast Cairo. 
 

Study area 

The North-East Cairo City (NECC) area, strategy-

ically positioned in the southeastern Nile Delta, 

encompasses portions of three governorates: El 

Sharkeya, El Qalyubia, and Cairo. This region spans an 

area of approximately 1428.54 km², delineated by 

latitudes 30° 8' to 30° 26' N and longitudes 31° 08' to 

31° 44' E. The northern and northwestern boundaries 

are defined by the Ismailia Canal, Belbeis Drain, and 

adjacent agricultural lands. To the east, the area is 

bounded by the 10th of Ramadan City, while the 

southern periphery is demarcated by the Cairo-Suez 

Road. Significant landmarks within the southwestern 

sector include the Al Gabal Al Asfar drain, a sewage 

treatment plant, the Abu Zabal dumpsite, and the Ard 

El-Berka water station, primarily located in El-Salam 

City (Fig. 1). 
 

 
 

Figure (1): Satellite map of Egypt (a) showing the location of the 

study area and (b) the main cities and road network of the NECC 

area. 
 

The influence of road networks on the magnitude, 

velocity, and direction of urban expansion is widely 

recognized (Shalaby et al., 2022). In the context of the 

New Egyptian Capital City (NECC), a complex 

network of radial and ring roads has been system-

atically developed to support the infrastructure needs of 

rapidly growing urban settlements. The radial road 

system comprises key routes such as the 10th of 

Ramadan to Belbeis, Cairo to Suez, Cairo to Ismailia, 

and Cairo to Belbeis roads, facilitating seamless 

connectivity between NECC and Cairo City to the 

west, as well as major eastern governorates and 

districts, including Port Said, Ismailia, and Suez Cities, 

and the Suez Canal (Fig. 1).  Complementing the radial 

roads, the NECC area is encircled by an array of ring 

roads, notably the Central Ring Road, the Middle Ring 

Road, and the Regional Ring Road. These arterial 

networks are pivotal in shaping the spatial dynamics 

and expansion trajectories of urban areas within 

NECC, underscoring the intrinsic link between 

infrastructural development and urbanization patterns. 

The strategic planning and implementation of these 

road networks not only facilitate efficient movement 

and connectivity but also significantly influence the 

region's urban morphology and growth prospects. 

 

MATERIALS AND METHODS 

 

The Landsat program, a joint effort by the National 

Aeronautics and Space Administration (NASA) and the 

United States Geological Survey (USGS), has been 

monitoring the Earth through satellite missions since 

1972 and provides free access to data on Earth's 

resources. We conducted our analysis using a time 

series of Landsat images captured by high-quality 

sensors, including Landsat Enhanced Thematic Mapper 

Plus (ETM+) and Landsat Operational Land Imager 

(OLI) / Thermal Infrared Sensor (TIRS) sensors. Only 

cloud-free satellite data was selected from the USGS 

website (https:/earthexplorer.usgs.gov) as a georefer-

enced dataset. The images were in UTM projection 

(WGS 84 datum, zone 36 N). Remote sensing data 

analysis was performed using several software tools; 

ERDAS Imagine was used for image processing 

including sub-setting, thematic map preparation, 

atmospheric, radiometric, and geometrical correction. 

Image enhancement techniques, including contrast 

stretching, optimal band combination, and principal 

component analysis, are employed to generate high 

spectral resolution imagery. The ENVI 5.3 software is 

involved in performing the image classification of land 

use and land cover (LULC) as well as the development 

of change detection maps.  
 

To produce various spectral indices and land surface 

temperature (LST) images, ArcGIS 10.5 was utilized. 

Subsequently, STATISTICA 7 is employed to carry 

out comprehensive statistical analyses. This multi-

faceted approach ensured a robust and detailed 

examination of the data, providing significant insights 

into the spatial and temporal dynamics of the study 

area. 
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Figure (2) defines the comprehensive methodology 

employed to achieve the study’s objectives. The multi-

temporal data utilized comprises three complete scenes 

from each of the ETM+7, OLI+8, and TIRS+8 sensors, 

specifically corresponding to the Path/Row coordinates 

of 176/39. These scenes, captured in November and 

July, facilitated the assessment of NDBI and NDVI 

spectral indices, land use and land cover (LULC), and 

land surface temperature (LST), respectively. The data 

spans a twenty-year interval, covering the years 2000 

and 2020. Detailed characteristics of the Landsat 

ETM+7 and OLI datasets are presented in Tables (1) 

and (2). Moreover, the Landsat imagery was 

synthesized into false color composites utilizing band 

combinations of (7, 4, 2) for Landsat 7 ETM + and (7, 

5, 3) for Landsat 8 OLI, as depicted in Figures (3) and 

(4). These composites were further enhanced through 

pan-sharpening techniques employing the panch-

romatic band, thereby augmenting the spatial resolution 

and visual clarity of the image composites. This 

methodical approach ensured the precise analysis of 

temporal and spatial variations in the study area, 

facilitating a thorough evaluation of the environmental 

changes over the specified period. 
 

Land cover classification and land use change 

After pre-processing, the multi-spectral remotely 

sensed data are employing image classification 

techniques like supervised or unsupervised classify-

cation to classify the imagery from different periods 

into land cover classes and create LULC maps. In this 

work, a supervised approach for Maximum Likelihood 

(MLC) classification is used. MLC is the most often 

used supervised classification, which is utilized in a 

range of applications (Sisodia, et al., 2014, Arnous and 

Green 2015). In addition to outperforming the other 

known parametric classifications, MLC takes into 

account the variance-covariance within the class 

distributions (Erdas, 1999). The MLC classification 

method is often used to assign a pixel to a certain class 

based on its similarity to the target class (Ahmed and 

Ahmed 2012).  
 

The main five signature classes were selected for 

classification urban area, agricultural land, bare land, 

salinized soil, and waterbodies. Residential buildings, 

highways, industries, and commercial buildings 

illustrate the urban area. The agricultural land repress-

ents both the areas with and without vegetation. The 

bare land represents the soil and unused land.  Training 

areas have been developed by selecting one or more 

polygons for each class. Pixels were taken to be the 

training pixels for a specific class within the training 

area. Then, the Confusion Matrix Using Ground Truth 

ROIs in ENVI5.0 was utilized in this analysis to test 

the accuracy of the classification of maximum 

likelihood.  
 

NDVI is an effective indicator of surface vegetation 

coverage and crop canopy growth stages. The temporal 

growth pattern of vegetation coverage, as expressed by 

NDVI, plays a crucial role in distinguishing crop types, 

although it may introduce some variation in values for 

certain crops. The most commonly used vegetation 

index is NDVI (Purevdorj et al., 1998; Arnous and 

Green, 2015). NDVI is calculated using visible and 

near-infrared (NIR) bands, which reflect vegetation 

health and density. It is determined by the difference 

between the reflected near-infrared and red band 

combinations. NDVI is computed as follows: 
 

 
Where R and NIR represent the red and near-infrared 

bands, respectively. 
 

To delineate urban land from Landsat imagery, this 

study used the Normalized Difference Built-up Index. 

 

 
 

Figure (2): Methodological Framework for Multi-Temporal satellite data analysis 
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Table (1): Characteristics of Landsat ETM+7 data 

(NASA, 2003) 
 

Band 

No. 

Wavelength 

interval 

(μm) 

Spectral 

response 

Resolution 

(m) 

1 0.45 - 0.52 Blue-Green 30 

2 0.52 - 0.60 Green 30 

3 0.63 - 0.69 Red 30 

4 0.76 - 0.90 Near IR 30 

5 1.55 - 1.75 Mid-IR 30 

6 10.40 - 12.50 Thermal IR 60 

7 2.08 - 2.35 Mid-IR 30 

8 0.52 - 0.90 Pan 15 

 

Table (2): Characteristics of Landsat 8 OLI data 

(NASA, 2013) 
 

Band 

No. 

Wavelength 

interval 

(μm) 

Spectral 

Response 

Resolution 

(m) 

1 0.43 – 0.45 Coastal/Aerosol 30 
2 0.45 - 0.52 Blue-Green 30 

3 0.52 - 0.60 Green 30 

4 0.63 - 0.69 Red 30 
5 0.84 - 0.88 Near IR 30 

6 1.56 - 1.66 SWIR-1 30 

7 2.10 – 2.30 SWIR-2 30 
8 0.50 – 0.68 Pan 15 

9 1.36 – 1.39 Cirrus 30 

10 10.30 – 11.30 Thermal IR-1 100 
11 11.50 – 12.50 Thermal IR-2 100 

 

 
 

 

Figure (3): Landsat ETM+7 image of the year (2000) for the study 

area. 

 

 
 

Figure (4): Landsat 8 OLI satellite image of the year (2020) that is 

used for conducting image processing. 

(NDBI) as introduced by Zhao and Chen (2005). The 

NDBI is particularly sensitive to the presence of built-

up areas. It is derived using specific spectral bands to 

identify and quantify these regions by analyzing the 

spectral characteristics of various land use/land cover 

(LU/LC) classes. The NDBI is calculated using the 

following formula: 

 
 

Where, Bands 4 and 5 correspond to the Landsat TM or 

ETM+ images.  

In the current study, the NDBI for Landsat 8 imagery is 

computed using the formula:  

 
 

 

where Bands 5 and 6 pertain to the Landsat 8 sensor 

(Arnous and Green, 2015). This index effectively 

distinguishes built-up areas from other land cover 

types, providing a robust tool for urban land extraction 

and analysis. 
 

Land surface temperature (LST) estimation  

To derive Land surface temperature (LST) readings 

from Landsat 7 and Landsat 8 satellite imagery, a 

meticulous four-step process must be followed. It is 

imperative to acknowledge that while the initial step 

diverges between the two satellites, the subsequent 

three steps remain consistent for both. The derivation 

of LST from the thermal bands of satellite imagery 

necessitates the utilization of specific bands or 

algorithms. Specifically, the thermal infrared bands 

employed for LST determination are band 6 for 

ETM+7 data, and bands 10 and 11 for TIRS+8, which 

measure the quantity of infrared radiation emitted from 

various land surfaces. Each band pixel contains a 

digital number (DN) value, representing a raw measure 

acquired by the sensor. Consequently, these DN values 

must be converted into physical quantities, such as 

radiance and brightness temperature, to extract 

quantitative information from the raw satellite data 

(Arnous and Mansour, 2023).  
 

The final land surface temperature (LST) map is 

generated through a series of sequential steps: first, the 

computation of the Normalized Difference Vegetation 

Index (NDVI); second, the conversion of Thermal 

Infrared Sensor (TIRS) band data to top-of-atmosphere 

(TOA) spectral radiance; and third, the estimation of 

atmospheric brightness temperature. Finally, the LST 

values are converted from Kelvin (K) to degrees 

Celsius (°C) (Khyami, 2021). These methodological 

steps are supported by equations detailed in Table (3). 

Follo-wing these procedures, LST is extracted, 

measured, and mapped from the thermal bands of 

remote sensing satellite data. This approach enhances 

the accuracy of temperature estimations and facilitates 

the analysis of spatiotemporal variations in LST 

patterns. In addition, the statistical correlation analyses 

are performed to investigate the interrelationships 

between NDVI, the NDBI, land use/land cover (LULC) 
changes, and LST, providing deeper insights into urban 

heat dynamics and environmental variability. 
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Table (3): Estimated parameters and mathematical formulas for remote sensing-based land surface analysis. 

 

Estimated 

Parameter 
Mathematical formula Reference 

NDBI 
 

Zha et al. (2003) 

NDVI 
 

Liu et al. (2018) 

DN to TOA 

Landsat7 
 

Chander and Markham (2003) 

Landsat8 
 

USGS (2014) 

TOA to BT 

 
Chander et al. (2009) 

LSE  Xiaolei et al. (2013) 

 

LST 

 

Jeevalakshmi et al. (2017) 

 

NDBI, Normalized Difference Built-up Index; NDVI, Normalized Difference Vegetation Index; BT,  Brightness Temperature 

LSE, Land Surface Emissivity; LST, Land Surface Temperature 

 

RESULTS 

 

This study investigated the spatial and temporal 

relationships between Land Surface Temperature 

(LST), Normalized Difference Vegetation Index 

(NDVI), Normalized Difference Built-up Index 

(NDBI), and Land Cover (LC) changes. To elucidate 

the interrelationships among these biophysical environ-

mental parameters, we utilized a suite of geospatial 

thematic maps for each parameter. Overlay analysis is 

employed to detect patterns of interrelationships. 

Furthermore, statistical techniques, including correl-

ation analysis, were applied to quantify the strength 

and direction of these relationships, providing a robust 

assessment of their interconnected dynamics. 
 

Analysis of land use/land cover changes and 

detection 

Figures (5) and (6) illustrate the land use and land 

cover (LU-LC) maps, along with the rates of LU-LC 

changes in North East Cairo City (NECC) over a 20-

year period (2000–2020). The data presented in Table 

(4) indicate a significant expansion of urban areas, 

which increased from 165.7 km² in 2000 to 376.9 km² 

in 2020, resulting in a net gain of 211.2 km². This 

expansion corresponds to an average annual growth 

rate of 10.56 km² per year, highlighting the rapid 

urbanization in the study area. Agricultural cover also 

declined from 297.4 km² in 2000 to 273.5 km² in 2020, 

with a net decrease of 23.9 km² at an annual rate of -

1.195 km²/year.  

Waterlogging exhibited a modest increase from 2.3 

km² in 2000 to 3.4 km² in 2020, reflecting a net gain of 

1.1 km² at an annual rate of 0.055 km² per year. Sim-

ilarly, salinized areas expanded from 2.5 km² in 2000 

to 5.3 km² in 2020, representing an increase of 2.8 km²  

 

at an annual rate of 0.14 km² per year. Remarkably, the 

water body area expanded significantly, increasing 

from 0.2 km² in 2000 to 5.2 km² in 2020, resulting in a 

total gain of 5 km² at an annual rate of 0.25 km² per 

year. 
 

 

The classification results for the NECC area in 2000 

and 2020 revealed that bare land was the most 

dominant land cover class, constituting 64.96% in 2000 

and 51% in 2020, followed by agricultural land, which 

decreased from 20.9% in 2000 to 19% in 2020. In 

contrast, water bodies and salinized soils showed slight 

increases, from 0.01% to 10.37% and from 0.17% to 

0.37%, respectively. Urban areas exhibited a 

significant increase, from 11.64% in 2000 to 27% in 

2020 (Figure 7). Furthermore, the land cover 

classification accuracy was validated through accuracy 

assessment analysis, yielding accuracy values of 

93.33% for the year 2000 and 96.67% for the year 

2020. The overall accuracy was lowest in 2000 and 

highest in 2020, likely due to the superior quality of 

Landsat 8 OLI images compared to Landsat 7 ETM+ 

images. 
 

Analysis of variation in NDBI, NDVI, and LST 

The analysis of urban boundaries (cities and 

settlement areas) using NDBI and multi-temporal 

images revealed that the study area underwent 

significant urban expansion from 2000 to 2020 (Fig. 

8A-B). In the year 2000, urban areas appeared in red in 

the North East Cairo City (NECC) with NDBI values 

approximately ranging from 0.08 to 0.2. Waterlogged 

areas and surface water vegetation, depicted in green, 

exhibited values between -0.06 and 0.08, dense 

vegetation, shown in dark green, had values between -

0.03 and -0.06, and bare land, shown in pale green, had 

values ranging from 0.2 to 0.5. 
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Figure (5): Supervised LULC classified Landsat image 2000 

showing geospatial distribution for each type of classes within the 
NECC area. 

 

 
 

Figure (6): Supervised LULC classified Landsat image 2020 

showing geospatial distribution for each type of classes within the 
NECC area. 

 

By 2020, urban areas were indicated in red with 

NDBI values between -0.03 and 0.02. Waterlogged 

areas and surface water vegetation, still shown in 

green, had values between -0.1 and -0.03, dense 

vegetation, depicted in dark green, had values between 

-0.3 and 0.1, and bare land, shown in pale green, had 

values ranging from 0.02 to -0.3 (Table 5). The drivers 

of this urban expansion included the increasing 

population and the sustainable development projects 

initiated over the past three decades, aimed at fostering 

agricultural, economic, and technological development 

(Arnous and Green, 2015; Arnous et al., 2017; 

Moubarak, 2021; El-Rayes et al., 2023; Darwish,2024).

The NDVI rate was calculated using a raster calculator 

in ArcGIS over a twenty-year timespan, comparing the 

years 2000 and 2020. The analysis utilized ETM 

Landsat 7 imagery for 2000 and OLI Landsat 8 

imagery for 2020 (Fig. 9A-B). In the year 2000, NDVI 

values ranged from -0.9 to 0.9. These values were 

classified into four categories: surface water and 

waterlogged areas (blue) with values from -0.9 to 0, 

bare land and urban areas (yellow) with values from 0 

to 0.2, sparse vegetation (light green) with values from 

0.3 to 0.4, and dense vegetation (dark green) with 

values from 0.5 to 0.9. In contrast, the NDVI values for 

year 2020 ranged from -0.1 to 0.6. These values were 

also classified into four categories: surface water and 

waterlogged areas (blue) with values from -0.1 to 0, 

bare land and urban areas (yellow) with values from 0 

to 0.1, sparse vegetation (light green) with values from 

0.2 to 0.4, and dense vegetation (dark green) with 

values from 0.5 to 0.6 (Table 6). This indicated an 

increase in vegetation cover and land reclamation in 

most of the investigated area, particularly in the 

northwest 10th of Ramadan area and the Orabi 

organization east of El-Obour City. In these regions, 
new irrigation wells and canals connected to the 

Ismailia canal had been constructed. However, there  
 

 
 

Figure (7): Pie chart showing the percentage change in LU/LC class 

categories within the NECC area between 2000 and 2020. 

 

Table (4): Areal Distribution, Percentage, and Rate of Change of Different LULC Classes from 2000 to 2020.  
 
 

 

Class 
LULC_2000 in 

Km2 

LULC_2000 

in % 

LULC_2020 

in Km2 

LULC_2020 

in % 

Change in 

area km2 

Rate of change 

per year 

Urban 165.7 11.64% 376.9 26.47% 211.2 10.56 

Bare land 924.7 64.96% 728.5 51.17% -196.2 -9.81 

Agriculture 297.4 20.89% 273.5 19.21% -23.9 -1.195 

Salinized area 2.5 0.17% 5.3 0.37% 5 0.25 

Waterbody 0.2 0.01% 5.2 0.37% 1.1 0.055 

Waterlogging area 2.3 0.16% 3.4 0.24% 2.8 0.14 
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Table (5): Normalized Difference Built-up Index (NDBI) spectral value ranges of different LULC classes in Landsat 

ETM+ (2000) and OLI (2020) Images. 
 

LULC Class Color 

ETM Landsat 7 

image (2000) 

OLI Landsat 8 

image (2020) 

Values range Values range 

Urban area Red 0.08 - 0.2 0.30 - 0.02 

Waterlogged, Surface water Green - 0.06 - 0.08 -0.10 - 0.03 

Dense vegetation Dark green 0.03 -0.07 -0.30 - 0.10 

Bare land Pale green 0.20 -0.50 0.20 - 0.30 

 

Table (6): Normalized difference vegetation index (NDBI) spectral value ranges of different LULC classes in Landsat 

ETM+ (2000) and OLI (2020) Images. 
 

LULC Class Color 

ETM Landsat 

7 image (2000) 

OLI Landsat 8 

image (2020) 

Values range Values range 

Surface water and waterlogged area Blue  -0.9 -0.0 -0.1 - 0.0 

Bare land - urban area Yellow  0.0 - 0.2 0.0 - 0.1 

Spare vegetation Light green  0.3 -0.4 0.2 -0.4 

Dense vegetation Dark green 0.5 -0.6 0.5 -0.6 

 

 
 

Figure (8A-B): NDBI enhanced multi-temporal Landsat images of 

˚NECC showing the change in urbanized areas. A, Landsat images 

(2000); B, Landsat images (2020). 
 

was a noticeable decrease in bare land (red) and an 

increase in surface water and waterlogged areas, 

although this was not consistently detected across all 

areas. 

The analysis of LST distribution between 2000 and 

2020, as depicted in Figure (10A-B), reveals signifi-

cant shifts in LULC and LST. The LST analysis, 

detailed in Table (7), indicates that barren regions 

exhibit the highest temperatures, followed sequentially 

by built-up areas, agricultural lands, and water bodies.  

 
 

Figure (9A-B): NDVI enhanced ETM and OLI Landsat image of 

NECC area; showing the change of vegetation covers, land 
reclamation, surface water, and waterlogged area. A, ETM 

Landsat image of NECC area (2000); B, OLI Landsat image of 

NECC area (2020). 
 

Specifically, in 2000, the LST in waterbody areas 

ranged from 32°C to 35°C, represented by a light green 

color. By 2020, these values increased to a range of 

56°C to 58°C, depicted by a dark green color. 

Agricultural areas displayed a varied trend, with LST 

values of 27°C to 31°C in 2000, rising to 59°C in 2020, 

attributed to the expansion of urban and barren lands, 

which consequently reduced vegetation cover. The 

LULC mapping and change estimation further 
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corroborate these findings. By comparing classified 

LULC maps from different time periods, areas 

undergoing significant change, such as the conversion 

of vegetation to urban landscapes, can be identified. 

This conversion has notably impacted LST, NDBI, and 

NDVI, highlighting the interplay between urbanization 

and environmental factors. 
 

 

Figure (10A-B): Spatial pattern LST distribution maps for year 2000 

(A) and 2020 (B) of NECC 
 

Interrelationship between LST, NDVI, and NDBI  

To elucidate the intricate relationship between LST, 

NDBI, and NDVI, a statistical analysis was under-

taken. Table (8) presents a detailed summary of the 

minimum, maximum, and means values across the 

NECC area, while Table (9) elaborates on the 

correlation coefficients for LST, NDBI, and NDVI for 

the years 2000 and 2020. The empirical findings 

indicated a robust positive correlation between LST 

and NDBI, with correlation values spanning from 0.74 

to 0.99 across the analyzed periods. This pronounced 

positive correlation is visually corroborated by the 2D 

scatterplots in Figures (13) and (14). Conversely, the 

analysis revealed a significant negative correlation 

between NDVI and LST, underscoring those areas with 

denser vegetation exhibited lower surface tempera-

tures. These results elucidate those urban areas, 

characterized by elevated NDBI values, experienced 

heightened temperatures, whereas vegetated regions, 

denoted by higher NDVI values, maintained cooler 

surface temperatures. The persistent positive correl-

ation between LST and NDBI from 2000 to 2020 

underscores the profound impact of urbanization on 

local climate dynamics, thereby accentuating the 

critical necessity of integrating vegetation into urban 

planning frameworks to ameliorate rising temperatures. 
 

 
 

Figure (11A-B): Scatter plot show the relationship between LST, 

NDBI in year 2000 (A) and 2020 (B). 
 

 
 

Figure (14): Scatter plot shows the relationship between LST, 
NDVI year 2000 (A) and 2020 (B). 
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Table (7): Change in LST (2000-2020) concerning LU/LC classes. 
 

LULC classes 
Change in 

area km2 
LST (2000) LST (2020) 

Urban 211.2 36 ˚C -37 ˚C 60 ˚C 

Bare land  -196.2 38˚C- 45 ˚C 61 ˚C 

Agriculture -23.9 27 ˚C-31 ˚C 59 ˚C 

Water bodies 3.9 32 ˚C-35 ˚C 58 ˚C -56 ˚C 

 

Table (8): Descriptive statistics of the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-

up Index (NDBI), and Land Surface Temperature (LST). 
 

Measurement LST 2000 
NDVI 

2000 

NDBI 

2000 

LST 

2020 

NDVI 

2020 

NDBI 

2020 

Maximum 44.61 0.6 0.33 62.54 0.45 0.11 

Minimum 27.67 0.01 0.08 56.47 0.07 0.03 

Mean 37.79 0.04 0.20 60.09 0.10 0.02 

Sum 74217.99 82.89 395.87 118025.8 195.48 39.3 

Standard Deviation 3.18 0.15 0.13 1.14 0.07 0.06 

Nulls 0.0 0.0 0.0 0.0 0.0 0.0 

Count 1964 1964 1964 1964 1964 1964 

 

Table (9): Statistical correlation matrix of Land Surface Temperature (LST), Normalized Difference Vegetation Index 

(NDVI), and Normalized Difference Built-up Index (NDBI) for 2000 and 2020 
 

Parameter  LST 2000 NDVI 2000 NDBI 2000 LST 2020 NDVI 2020 NDBI 2020 

LST 2000 1 
     NDVI 2000 0.831

*
 1 

    NDBI 2000   0.991
**

 0.898
**

 1 

   LST 2020 1.00
**

 0.831
*
 0.991

**
 1 

  NDVI 2020 0.845
*
 1.00

**
 0.909

**
 0.846

*
 1 

 NDBI 2020 0.741 0.989
**

 0.824
*
 0.741 0.985

**
 1 

 

*, highly positive correlation; **, very high positive correlation 

 

DISCUSSION 
 

By reviewing the land use and land cover (LULC) 

changes and the statistical analysis, this investigation 

highlights the inter-relationship between urban 

expansion and environmental parameters in the NECC 

study area. It also, examines the spatial and temporal 

distribution of Land Surface Temperature (LST), 

Normalized Difference Vegetation Index (NDVI), and 

Normalized Difference Built-up Index (NDBI) in 

North East Cairo City (NECC) during a period of 

twenty years, from 2000 to 2020.  
 

The NECC witnessed urban growth, with urban 

areas increasing by 211.2 km² at an average annual 

pace of +10.56 km². This urban growth has profoundly 

altered the landscape, resulting in an obvious decrease 

in the area of bare land and agriculture. To be more 

specific, the area of bare land declined by 196.2 Km
2
, 

while the agricultural land declined by 23.9 Km
2
.  

Conversely, slight rises were observed in water bodies 

and salinized areas, which indicates the continuous 

alterations in land use dynamics. According to the land 

use classification findings from 2000 and 2020, bare 

land and agricultural cover are the most prevalent 

categories of land use, even though their proportions 

have decreased over time. Urban areas have expanded 

significantly from 11.64% in 2000 to 27% in 2020, 

This shift underscores a distinct pattern and a clear 

trend of urban development and land conversion that 

are influenced by economic and demographic factors. 

 

However, the LST analysis demonstrates a 

significant rise in surface temperatures, particularly in 

urban and bare land areas. The urban areas in 2020 

recorded the highest Land Surface Temperature (LST) 

values, with temperatures ranging from 56-58°C. 

Compared to that, agricultural areas experienced lower 

temperatures, ranging from 27-31°C, while water 

bodies had temperatures ranging from 32-35°C. The 

primary contributing factor to this increase in 

temperature is mostly due to the widespread 

urbanization and decrease in vegetation cover. 
 

The notable rise in temperature in urban areas 

highlights the Urban Heat Island (UHI) phenomenon, 

wherein the constructed environment absorbs and 

retains heat to a greater extent than natural landscapes. 

The finding matches up with previous studies that 

document the heat retention properties of metropolitan 

areas and the resulting influence on the local climate. 

The worldwide and Egyptian research extensively 

supports the strong correlation between urban 

expansion and the rise in land surface temperature 

(LST). Global research, notably studies conducted by 

Oke (1982), Weng et al. (2004), and Meng et al. 

(2010), emphasize that urbanization increases land 

surface temperature (LST) as a result of heat 

absorption by impermeable surfaces and decreased 

vegetation. In Egypt, academics Abd-Elmabod et al. 

(2022), and Mostafa et al. (2023) have observed 

notable increases in Land Surface Temperature (LST) 

due to the rapid expansion of urban areas and changes 
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in land cover. These findings align with global patterns 

and highlight how urban sprawl and material 

conductivity contribute to the intensification of the 

Urban Heat Island (UHI) effect. 

The statistical analysis reveals a strong positive 

correlation between Land Surface Temperature (LST) 

and the Normalized Difference Built-Up Index 

(NDBI), with coefficients ranging from 0.74 to 0.99, 

indicating that increased built-up areas correspond to 

higher temperatures. Conversely, the correlation 

between the Normalized Difference Vegetation Index 

(NDVI) and LST is negative, signifying that denser 

vegetation is linked to cooler temperatures. This 

highlights the cooling effect of vegetation, which 

mitigates temperature increases associated with 

urbanization. The findings underscore the importance 

of maintaining and expanding green spaces to 

counteract the Urban Heat Island (UHI) effect and 

improve urban environmental quality, suggesting that 

green infrastructure is crucial for managing urban heat 

and enhancing climate resilience. 

As an Overall implication, the study's results 

underscore the profound impact of urban expansion on 

LST, NDVI, and NDBI. The observed trends indicate 

that increasing built-up areas are the primary driver of 

higher surface temperatures, while the loss of 

vegetation exacerbates this effect. The study highlights 

the need for sustainable urban planning that integrates 

green spaces and environmental considerations to 

mitigate the negative impacts of urban heat. Effective 

urban planning and policy measures should focus on 

balancing development with environmental presser-

vation. Strategies such as increasing green spaces, 

promoting sustainable construction practices, and 

enhancing urban greenery can help mitigate the UHI 

effect and promote a more sustainable urban 

environment. In conclusion, this study provides a 

comprehensive understanding of the interrelationships 

between LST, NDVI, and NDBI in the context of rapid 

urban expansion in the NECC. The findings underscore 

the need for integrated urban planning approaches that 

consider environmental impacts and promote 

sustainability. By addressing these issues, cities can 

better manage the challenges of urbanization and work 

towards creating more resilient and livable urban 

environments. 
 

CONCLUSION 
 

This research reveals an extensive analysis of the 

linkages amongst Land Surface Temperature (LST), 

Normalized Difference Vegetation Index (NDVI), and 

Normalized Difference Built-Up Index (NDBI) in 

North East Cairo City (NECC) over twenty years 

(2000-2020). While agriculture and bare areas have 

reduced, there has been a noticeable increase in urban 

growth, which has led to a significant rise in land 

surface temperatures. The results emphasize that urban 

areas have greater temperatures than the adjacent 

natural landscapes. The study's observation indicates 

that urban areas exhibited the highest Land Surface 

Temperature (LST) readings, while agricultural areas 

and water bodies displayed comparatively lower 

temperatures. The robust positive association between 

Land Surface Temperature (LST) and Normalized 

Difference Built-up Index (NDBI) underscores the role 

of expanded urban areas in rising temperatures. 

Conversely, the negative correlation between the 

Normalized Difference Vegetation Index (NDVI) and 

LST underscores the cooling impact of vegetation. The 

findings line up with investigations conducted at both 

global and local levels, reinforcing the correlation 

between urbanization, and land surface temperature. 

The study's results align with the existing research that 

shows how urban expansion results in increased Land 

Surface Temperature (LST) as a result of heat 

absorption by impermeable surfaces and a reduction in 

vegetation. Based on these findings, the research 

promotes the implementation of sustainable urban 

planning that integrates green infrastructure and 

environmental factors. Efficient strategies should 

involve the enlargement of green areas, implementation 

of sustainable construction methods, and improvement 

of urban vegetation. Implementing such solutions is 

essential for reducing the land surface temperature and 

enhancing the quality of the urban environment, 

eventually promoting a more robust and livable 

environment in cities. Finally, this research emphasizes 

the critical need for integrated urban planning 

strategies that effectively harmonize development with 

environmental sustainability. By intelligently estab-

lishing and sustaining green infrastructure, where cities 

can successfully tackle the difficulties brought about by 

fast urban expansion, such as with higher land surface 

temperature, and improve the overall quality of urban 

life. This approach contributes to creating a more 

sustainable future for cities. 

 

REFERENCES 

 

ABDELALEEM, M. 2023. Implication of land use 

changes on the groundwater flow regime and 

quality, North East Cairo, Egypt using geographic 

information systems (GIS), PhD, Suez Canal 

University, Ismailia, Egypt, 236 p. 

ABD-ELMABOD, S.K., M.A. JIMÉNEZ-GONZ-

ÁLEZ, A. JORDÁN, Z. ZHANG, E.S. MOHA-

MED, A.A. HAMMAM, A.A. EL BARO-UDY, 

M.K. ABDEL-FATTAH, M.A. ABDELF-ATTAH, 

AND L. JONES. 2022. Past and future impacts of 

urbanisation on land surface temperature in Greater 

Cairo over a 45 year period. The Egyptian Journal 

of Remote Sensing and Space Science 25 (4): 961-

974. https://doi.org/10.1-016/j.ejrs.2022.10.001. 

ABOELNOUR, M., AND B. A. ENGEL. 2018. 

Application of remote sensing techniques and 

geographic information systems to analyze land 

surface temperature in response to land use/land 

cover change in Greater Cairo Region, Egypt. 

Journal of Geographic Information System, 10(1): 

57-88.https://doi.org/10.4236/jgis.2018.101003. 

AHMED, B., AND R. AHMED. 2012. Modeling urban 

land cover growth dynamics using multi-temporal 

https://doi.org/10.1-016/j.ejrs.2022.10.001
https://doi.org/10.4236/jgis.2018.101003


Impact of Land Cover Change on LST, NDVI, and NDBI in North East Cairo, Egypt 

124 

 

satellite images: A case study of Dhaka, 

Bangladesh. ISPRS International Journal of Geo-

Information, 1:3–31. https://doi.org/10.3390/ijg-

i1010003 

AKINBOBOLA, A. 2019. Simulating land cover 

changes and their impacts on land surface 

temperature in Onitsha, South East Nigeria. 

Atmospheric and Climate Sciences, 9(02): 243. 

https://doi.org/10.4236/acs.2019.92015. 

ALADEMOMI, A. S., C. J. OKOLIE, O. E. DARA-

MOLA, R. O. AGBOOLA, AND T. J. SALAMI. 

2020. Assessing the relationship of LST, NDVI, 

and EVI with land cover changes in the Lagos 

Lagoon environment. Quaestiones Geographicae, 

39(3): 111-123. https://doi.org/10.2-478/quageo-

2020-0025. 

ALEXANDER, C. 2020. Normalized difference 

spectral indices and urban land cover as indicators 

of land surface temperature (LST). International 

Journal of Applied Earth Observation and 

Geoinformation, 86: 102013. https://doi.org/10.1-

016/j.jag.2019.102013. 

ARNOUS, M.O., A.E. EL-RAYES, AND A.M. 

HELMY. 2017. Land-use/land-cover change: A key 

to understanding land degradation and relating 

environmental impacts in Northwestern Sinai, 

Egypt. Environmental Earth Sciences, 76(7): 26. 

https://doi.org/10.1007/s12665-017-6571-3 

ARNOUS, M.O., AND B.M. MANSOUR. 2023. 

Utilizing multi-temporal thermal data to assess 

environmental land degradation impacts: Example 

from Suez Canal region, Egypt. Environmental 

Science and Pollution Research, 30(1): 2145-2163. 

https://doi.org/10.1007/s11356-022-22237-z 

ARNOUS, M.O., A.E. EL-RAYES, AND D.R. 

GREEN. 2015. Hydrosalinity and environmental 

land degradation assessment of the East Nile Delta 

region, Egypt. Journal of Coastal Conservation, 

19(4): 491–513.  

https://doi.org/10.1007/s11852-015-0402-z 

BHANAGE, D.A., A.V. PAWAR, AND K. 

KOTECHA. 2021. IT infrastructure anomaly dete-

ction and failure handling: A systematic literature 

review focusing on datasets, log preprocessing, 

machine and deep learning approaches, and 

automated tool. IEEE Access, 9: 156392-156421. 

http://dx.doi.org/10.1109/ACCESS.2021.3128283. 

CHANDER, G., AND B. MARKHAM. 2003. Revised 

Landsat-5 TM radiometric calibration procedures 

and postcalibration dynamic ranges. IEEE 

Transactions on Geoscience and Remote Sensing, 

41: 2674-2677. https://doi.org/10.1109/TGRS.2-

003.818464. 

CHANDER, G., B. MARKHAM, AND D. HELDER. 

2009. Summary of current radiometric calibration 

coefficients for Landsat MSS, TM, ETM+, and EO-

1 ALI sensors. Remote Sensing of Environment, 

113(5): 893-903. https://doi.org/10.1016/j.rs-

e.2009.01.007. 

CHOUDHURY, D., K. DAS, AND A. DAS. 2019. 

Assessment of land use land cover changes and its 

impact on variations of land surface temperature in 

Asansol-Durgapur development region. The 

Egyptian Journal of Remote Sensing and Space 

Science, 22(2): 203-218. https://doi.org/10.1-

016/j.ejrs.2018.05.004. 

DARWISH, K. 2024. Monitoring Coastline Dyn-amics 

Using Satellite Remote Sensing and Geographic 

Information Systems: A Review of Global Trends. 

Catrina: The International Journal of Environmental 

Sciences, 31(1), 1-23. doi: 10.21608/cat.2024.23-

3931.1196. 

DAS, S., J. PÉREZ-RAMÍREZ, J. GONG, N. DEW-

ANGAN, K. HIDAJAT, B.C. GATES, AND S. 

KAWI. 2020. Core-shell structured catalysts for 

thermocatalytic, photocatalytic, and electrocatalytic 

conversion of CO2. Chemical Society Reviews, 

49(10): 2937-3004. 

EL-BATTRAWY, O., EL-SHELTAWY, A., and HAS-

BALLAH, A. 2024. Assessment of Indoor Water-

Soluble Particulates in Medical and Residential 

Sites. Catrina: The International Journal of Envir-

onmental Sciences, 32(1), 45-59. doi: 10.21608/c-

at.2024.227856.1188. 

EL-RAYES, A.E., M.O. ARNOUS, D.R. GREEN, 

AND N.F. GOUDA. 2023. Geo-hazards assessment 

of the new-found industrial communities: An 

example from the 10th of Ramadan industrial 

region, Egypt. Environmental Systems Research, 

12: 21. https://doi.org/10.1186/s40068-023-00306-7 

ERDAS. 1999. ERDAS Field Guide, Fifth Edition: 

Atlanta, GA. 

FATHIZAD, H., M. TAZEH, S. KALANTARI, AND 

S. SHOJAEI. 2017. The investigation of spatio-

temporal variations of land surface temperature 

based on land use changes using NDVI in 

Southwest of Iran. Journal of African Earth 

Sciences, 134: 249-256. https://doi.org/10.1016-

/j.jafrearsci.2017.06.007 

FONSEKA, H., H. ZHANG, Y. SUN, H. SU, AND H. 

L. LIN. 2019. Urbanization and its impacts on land 

surface temperature in Colombo metropolitan area, 

Sri Lanka, from 1988 to 2016. Remote Sensing, 

11(8): 957-975. https://doi.org/10.3390/rs11080957 

GEBRESLASSIE, H. 2014. Land use-land cover 

dynamics of Huluka watershed, Central Rift Valley, 

Ethiopia. International Soil and Water Conservation 

Research, 2(4): 25-33. https://doi.org/10.1016/S-

2095-6339(15)30055-1 

GHERRAZ, H., I. GUECHI, AND D. ALKAMA. 

2020. Quantifying the effects of spatial patterns of 

green spaces on urban climate and urban heat island 

in a semi-arid climate. Bulletin de la Société Royale 

des Sciences de Liège, 89: 164-185. https://doi.o-

rg/10.25518/0037-9565.9821 

GOGOI, P.P., V. VINOJ, D. SWAIN, G. ROBERTS, J. 

DASH, AND S. TRIPATHY. 2019. Land use and 

land cover change effect on surface temperature 

over Eastern India. Sci Rep, 20 ; 9 (1) : 8859.  

https://doi.org/10.1038/s41598-019-45213-z 

GONG, A.,Y. CHEN, J. LI, H. GONG, AND X. LI. 

2006. Spatial distribution patterns of the urban heat 

https://doi.org/10.3390/ijg-i1010003
https://doi.org/10.3390/ijg-i1010003
https://doi.org/10.4236/acs.2019.92015.
https://doi.org/10.2-478/quageo-2020-0025
https://doi.org/10.2-478/quageo-2020-0025
https://doi.org/10.1-016/j.jag.2019.102013
https://doi.org/10.1-016/j.jag.2019.102013
https://doi.org/10.1007/s12665-017-6571-3
https://doi.org/10.1007/s11356-022-22237-z
https://doi.org/10.1007/s11852-015-0402-z
http://dx.doi.org/10.1109/ACCESS.2021.3128283
https://doi.org/10.1109/TGRS.2-003.818464
https://doi.org/10.1109/TGRS.2-003.818464
https://doi.org/10.1016/j.rs-e.2009.01.007
https://doi.org/10.1016/j.rs-e.2009.01.007
https://doi.org/10.1-016/j.ejrs.2018.05.004
https://doi.org/10.1-016/j.ejrs.2018.05.004
https://doi.org/10.1186/s40068-023-00306-7
https://doi.org/10.1016-/j.jafrearsci.2017.06.007
https://doi.org/10.1016-/j.jafrearsci.2017.06.007
https://doi.org/10.3390/rs11080957
https://doi.org/10.1016/S-2095-6339(15)30055-1
https://doi.org/10.1016/S-2095-6339(15)30055-1
https://doi.o-rg/10.25518/0037-9565.9821
https://doi.o-rg/10.25518/0037-9565.9821
https://doi.org/10.1038/s41598-019-45213-z


Mohamed et al., 

125 

 

island based on remote sensing images: A case 

study in Beijing, China. Journal of the Indian 

Society of Remote Sensing, 38(4): 654-663.   

https://doi.org/10.1109/igarss.2006.600 

GRIGORAȘ, G., AND B. URIȚESCU. 2019. Land 

use/land cover changes dynamics and their effects 

on surface urban heat island in Bucharest, Romania. 

International Journal of Applied Earth Observation 

and Geoinformation, 80: 115-126. https://doi.org/1-

0.1016/j.jag.2019.03.009 

GUHA, S., H. GOVIL, A. DEY, AND N. GILL. 2018. 

Analytical study of land surface temperature with 

NDVI and NDBI using Landsat 8 OLI and TIRS 

data in Florence and Naples City, Italy. European 

Journal of Remote Sensing, 51(1): 667-678. 

https://doi.org/10.1080/22797254.2018.1474494 

GUHA, S., H. GOVIL, N. GILL, AND A. DEY. 2020. 

Analytical study on the relationship between land 

surface temperature and land use/land cover 

indices. Annals of GIS, 26(2): 201-216. 

https://doi.org/10.1080/19475683.2020.1754291  

HASSAN, Z., R. SHABBIR, S.S. AHMAD, A. H. 

MALIK, N. AZIZ, A. BUTT, AND S. ERUM. 

2016. Dynamics of land use and land cover change 

(LULC) using geospatial techniques: A case study 

of Islamabad, Pakistan. SpringerPlus, 5(1): 1–11. 

https://doi.org/10.1186/s40064-016-2414-z 

JABER, S.M. 2019. On the relationship between 

normalized difference vegetation index and land 

surface temperature: MODIS-based analysis in a 

semi-arid to arid environment. Geocarto 

International, 0(1010–6049): 1–19. 

https://doi.org/10.1080/10106049.2019.1633421 

JANSEN, L.J., AND A. DI GREGORIO. 2002. 

Parametric land cover and land-use classifications 

as tools for environmental change detection. 

Agriculture, Ecosystems & Environment, 91(1-3): 

89-100. https://doi.org/10.1016/S01678809(01)-

00243-2 

JEEVALAKSHMI, D., S. NARAYANA REDDY, 

AND B. MANIKIAM. 2017. Land surface temp-

erature retrieval from LANDSAT data using 

emissivity estimation. International Journal of 

Applied Engineering Research, 12(20): 9679-9687. 

https://api.semanticscholar.org/CorpusID:40033815  

KHYAMI, A. 2021. Impact of land cover change on 

land surface temperature over Greater Beirut Area–

Lebanon. Journal of Geoinformatics & Environ-

mental Research, 2(01): 14-27. https://doi.org-

/10.38094/jastt302174 

LIU, J.P., A.C. LI, K. H. XU, D.M. VELOZZI, Z.S. 

YANG, J.D. MILLIMAN, AND D.J. DEMASTER. 

2006. Sedimentary features of the Yangtze River-

derived along-shelf clinoform in the East China 

Sea. Marine Geology, 226(3-4): 193-207. 

https://doi.org/10.1016/j.csr.2006.07.013 

MALLICK, J., KANT, Y., AND BHARATH, B. D. 

2008. Estimation of Land Surface Temperature 

Over Delhi Using Landsat-7 ETM+. Journal of 

Indian Geophysics Union, 12(3), 131-140. 

https://doi.org/10.1007/s41976-018-0004-2 

MENG, Q., W. LIU, L.L. ZHANG, M. ALLAM, Y. 

BI, X.L. HU, J.F. GAO, D. HU, AND T. JANCsÓ. 

2022. Relationships between land surface 

temperatures and neighboring environment in 

highly urbanized areas: Seasonal and scale effects 

analyses of Beijing, China. Remote Sensing 14 (17): 

4340. https://doi.org/10.3390/rs14174340. 

Mostafa, W., Z. Magd, S. Abo Khashaba, B. 

Abdelaziz, E. Hendawy, A. Elfadaly, M. Nabil, D. 

Kucher, S. Chen, and E. S. Mohamed. 2023.  

Impacts of Human Activities on Urban Sprawl and 

Land Surface Temperature in Rural Areas: A Case 

Study of El-Reyad District, Kafrelsheikh 

Governorate, Egypt." Sustainability, 15: 13497. 

https://doi.org/10.3390/su151813497 

MOUBARAK, A.H., ARNOUS, M.O., AND EL-

RAYES, A.E. 2021. Integrated Geoenvironmental 

and Geotechnical Risk Assessment of East Port 

Said Region, Egypt for Regional Development. 

Geotechnical and Geological Engineering, 39(2), 

1497-1520. http://doi.org/10.1007/S10706-020-

01571-4. 

NASA. 2003. The Band Designations for the Landsat 

Satellites. Retrieved from http://landsat.usgs.gov-

/using_landsat_7_data.php.6 

NASA. 2013. The Band Designations for the Landsat 

Satellites. Retrieved from http://landsat.us-

gs.gov/band. 

NETELER, M. 2010. Estimating Daily Land Surface 

Temperatures in Mountainous Environments by 

Reconstructed MODIS LST Data. Remote Sensing, 

2(1), 333-351. https://doi.org/10.3390/rs1020333 

OBIEFUNA, J.N., OKOLIE, C.J., NWILO, P.C., 

DARAMOLA, O.E., AND ISIOFIA, L.C. 2021. 

Potential Influence of Urban Sprawl and Changing 

Land Surface Temperature on Outdoor Thermal 

Comfort in Lagos State, Nigeria. Quaestiones 

Geographicae, 40(1), 5-23. https://doi.org/10.2-

478/quageo-2021-0001 

OKE, T.R. 1982. The energetic basis of the urban heat 

island. Quarterly Journal of the Royal Meteo-

rological Society 108 (455): 1-24. http://doi.o-

rg/10.1002/qj.49710845502. 

PAL, S., AND ZIAUL, S.K. 2017. Detection of Land 

Use and Land Cover Change and Land Surface 

Temperature in English Bazar Urban Centre. The 

Egyptian Journal of Remote Sensing and Space 

Science, 20(1), 125-145. https://doi.org/10.10-

16/j.ejrs.2016.11.003 

PRATA, A.J., CASELLES, V., COLL, C., SOBRINO, 

J.A., AND OTTLE, C. 1995. Thermal Remote 

Sensing of Land Surface Temperature From Sat-

ellites: Current Status and Future Prospects. Rem-

ote Sensing Reviews, 12(3-4), 175-224. https://do-

i.org/10.1080/02757259509532285 

PUREVDORJ, R., TATELSHI, T., AND ISHIYAMA, 

Y. 1998. Relationships Between Percent Vegetation 

Cover and Vegetation Indices. International Journal 

of Remote Sensing, 19(18), 3519–3535. 

http://doi.org/10.1080/014311698213795. 

SHALABY, H., HERMAS, E., KHORMI, H., FARG- 

https://doi.org/10.1109/igarss.2006.600
https://doi.org/1-0.1016/j.jag.2019.03.009
https://doi.org/1-0.1016/j.jag.2019.03.009
https://doi.org/10.1080/22797254.2018.1474494
https://doi.org/10.1080/19475683.2020.1754291
https://doi.org/10.1186/s40064-016-2414-z
https://doi.org/10.1080/10106049.2019.1633421
https://doi.org/10.1016/S01678809(01)-00243-2
https://doi.org/10.1016/S01678809(01)-00243-2
https://api.semanticscholar.org/CorpusID:40033815
https://doi.org-/10.38094/jastt302174
https://doi.org-/10.38094/jastt302174
https://doi.org/10.1016/j.csr.2006.07.013
https://doi.org/10.1007/s41976-018-0004-2
https://doi.org/10.3390/rs14174340
https://doi.org/10.3390/su151813497
http://doi.org/10.1007/S10706-020-01571-4.
http://doi.org/10.1007/S10706-020-01571-4.
http://landsat.usgs.gov-/using_landsat_7_data.php.6
http://landsat.usgs.gov-/using_landsat_7_data.php.6
http://landsat.us-gs.gov/band.
http://landsat.us-gs.gov/band.
https://doi.org/10.3390/rs1020333
https://doi.org/10.2-478/quageo-2021-0001
https://doi.org/10.2-478/quageo-2021-0001
http://doi.o-rg/10.1002/qj.49710845502
http://doi.o-rg/10.1002/qj.49710845502
https://doi.org/10.10-16/j.ejrs.2016.11.003
https://doi.org/10.10-16/j.ejrs.2016.11.003
https://do-i.org/10.1080/02757259509532285
https://do-i.org/10.1080/02757259509532285
http://doi.org/10.1080/014311698213795


Impact of Land Cover Change on LST, NDVI, and NDBI in North East Cairo, Egypt 

126 

 

HALY, A.M., ELSAYED, A.M., ALQURASHI, 

A., AND ASCOURA, I. 2022. The Interplay 

Between Spatial Urban Expansion and Morph-

ologic Landscapes East of Cairo, Egypt Using Time 

Series Satellite Imagery. ISPRS International 

Journal of Geo-Information, 11(7), 386. 

https://doi.org/10.3390/ijgi11070386. 

SISODIA, P.S., TIWARI, V., AND KUMAR, A. 2014. 

Analysis of Supervised Maximum Likelihood 

Classification for Remote Sensing Image. 

International Conference on Recent Advances and 

Innovations in Engineering (ICRAIE-2014), 1-4. 

https://doi.org/10.1109/ICRAIE.2014.6909319 

UNITED NATIONS. 2014. World Urbanization 

Prospects. Retrieved from 

https://www.un.org/development/desa/en/news/pop

ulation/world-urbanization-prospects.html. 

USGS. 2014. Using the USGS Landsat 8 Product. 

Retrieved December 11, 2014, from 

https://landsat.usgs.gov/using-usgs-landsat-8-

product. 

VAUCLIN, M., VIEIRA, S.R., BERNARD, R., AND 

HATFIELD, J.L. 1982. Spatial Variability of 

Surface Temperature Along Two Transects of a 

Bare Soil. Water Resources Research, 18(6), 1677-

1686.  https://doi.org/10.1029/WR018i006p01677 

VINAYAK, B., LEE, H.S., AND GEDEM, S. 2021. 

Prediction of Land Use and Land Cover Changes in 

Mumbai City, India, Using Remote Sensing Data 

and a Multilayer Perceptron Neural Network-Based 

Markov Chain Model. Sustainability, 13(2), 471. 

https://doi.org/10.3390/su13020471. 

WANG, Y.C., HU, B.K., MYINT, S.W., FENG, C.C., 

CHOW, W.T., AND PASSY, P.F. 2018. Patterns of 

Land Change and Their Potential Impacts on Land 

Surface Temperature Change in Yangon, Myanmar. 

Science of the Total Environment, 643, 738-750. 

https://doi.org/10.1016/j.scitotenv.2018.06.209 

WENG, Q., LU, D., AND SCHUBRING, J. 2004. 

Estimation of Land Surface Temperature–

Vegetation Abundance Relationship for Urban Heat 

Island Studies. Remote Sensing of Environment, 

89(4), 467-483. https://doi.org/10.1016/j.rse.200-

3.11.005. 

WENG, X.Y., ZHENG, C.J., XU, H.X., AND SUN, 

J.Y. 2007. Characteristics of Photosynthesis and 

Functions of the Water–Water Cycle in Rice (Oryza 

sativa) Leaves in Response to Potassium 

Deficiency. Physiologia Plantarum, 131(4), 614-

621. https://doi.org/10.1111/j.13993054.2007.0-

0978.x 

WERE, K., DICK, Ø.B., AND SINGH, B.R. 2014. 

Exploring the Geophysical and Socioeconomic 

Determinants of Land Cover Changes in Eastern 

Mau Forest Reserve and Lake Nakuru Drainage 

Basin, Kenya. GeoJournal, 79(6), 775–790. 

https://doi.org/10.1007/s10708-014-9525-2. 

XIE, M., WANG, Y., CHANG, Q., FU, M., AND YE, 

M. 2013. Assessment of Landscape Patterns 

Affecting Land Surface Temperature in Different 

Biophysical Gradients in Shenzhen, China. Urban 

Ecosystems, 16(4), 871-886. https://portal.issn.org/-

resource/ISSN/1083-8155 

XIONG, J., LIU, Y., LIN, X., ZHANG, H., ZENG, J., 

HOU, J., AND CHU, H. 2012. Geographic 

Distance and pH Drive Bacterial Distribution in 

Alkaline Lake Sediments Across Tibetan Plateau. 

Environmental Microbiology, 14(9), 2457-2466. 

https://doi.org/10.1111%2Fj.14622920.2012.02-

799.x 

ZHA, Y., GAO, J., AND NI, S. 2003. Use of 

Normalized Difference Built-Up Index in 

Automatically Mapping Urban Areas from TM 

Imagery. International Journal of Remote Sensing, 

24(3), 583-594. https://doi.org/10.1080/01431-

160304987 

ZHAO, H.M., AND CHEN, X.L. 2005. Use of 

Normalized Difference Bareness Index in Quickly 

Mapping Bare Areas from TM/ETM. Geoscience 

and Remote Sensing Symposium, 3 (25–29), 1666–

1668. https://doi.org/10.1109/IGARSS.2005.1-

526319. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.3390/ijgi11070386
https://doi.org/10.1109/ICRAIE.2014.6909319
https://www.un.org/development/desa/en/news/population/world-urbanization-prospects.html
https://www.un.org/development/desa/en/news/population/world-urbanization-prospects.html
https://landsat.usgs.gov/using-usgs-landsat-8-product
https://landsat.usgs.gov/using-usgs-landsat-8-product
https://doi.org/10.1029/WR018i006p01677
https://doi.org/10.3390/su13020471
https://doi.org/10.1016/j.scitotenv.2018.06.209
https://doi.org/10.1016/j.rse.200-3.11.005
https://doi.org/10.1016/j.rse.200-3.11.005
https://doi.org/10.1111/j.13993054.2007.0-0978.x
https://doi.org/10.1111/j.13993054.2007.0-0978.x
https://doi.org/10.1007/s10708-014-9525-2
https://portal.issn.org/-resource/ISSN/1083-8155
https://portal.issn.org/-resource/ISSN/1083-8155
https://doi.org/10.1111%2Fj.14622920.2012.02-799.x
https://doi.org/10.1111%2Fj.14622920.2012.02-799.x
https://doi.org/10.1080/01431-160304987
https://doi.org/10.1080/01431-160304987
https://doi.org/10.1109/IGARSS.2005.1-526319
https://doi.org/10.1109/IGARSS.2005.1-526319


Mohamed et al., 

127 

 

 

مؤشر الغطاء ،  (LST) تقييم تأثير تغير الغطاء الأرضى على الأختلافات في درجة حرارة سطح  الأرض

، باستخدام بيانات الأقمار الصناعية لاندسات في   (NDBI)العمرانىمؤشر البناء ، و (NDVI) النباتي 

 شمال شرق القاهرة، مصر
 

مروة عبد العليم محمد
1

محمد عثمان عرنوس ،
2

مى جريشمحمد حل ،
2

هانى فتحى عبد الجواد ،
1  

1
 مصر -العريش  -جامعة العريش  -كلية العلوم  -قسم الجيولوجيا

2
 مصر –الاسماعيلية  -جامعة قناة السويس  -كلية العلوم  -قسم الجيولوجيا

 

 الملخص العربي
 

في الكثافة العمرانية خلال العقود الأخيرة. لذا، سعاً سريعاً تووأحدث المدن الجديدة، حيث شهدت زيادةً  دينة شمال شرق القاهرة في مصر منتعَُدُّ م

تأثير هذا التغير على العوامل البيئية لتحقيق التنمية وفهم التداعيات البيئية لتحولات الغطاء الأرضي في مثل هذه المناطق و أصبح من الضرورى مراقبة

الناتج عن الزيادة  تغير الغطاء الأرضي،لتقييم تأثير  متشابكة المكانيةالعلاقات الفهم ودراسة   إلى فالدراسة الحالية تهدف المستدامة والمحافظة على البيئة.

 مؤشر درجة الحرارة لسطح الأرض، و (NDVI) ومؤشر الغطاء النباتي (NDBIومؤشر البناء العمرانى  ) ،عليالعمرانية المفاجئة بأنشطتها المختلفة

(LST)   متعددة الفترات الزمنية، مثل صور   قمار صناعية أمريكية من نو  لاندساتلأصور  ( باستخدام2020-2000عامًا ) 20على مدار لمنطقة

ETM و +OLI/TIRS  وحيث  تم عمل تصنيف لصور الأقمار الصناعية لتضم  خمس قتات متميزة تغطى الغطاء الأرضي لمنطقة الدراسة وهى المناطق

 211.2.وكشفت النتائج عن زيادة المناطق العمرانية بحوالى لزراعية، والتربة المملحة، والمسطحات المائية.الحضرية، والأراضي الجرداء، والمناطق ا

كيلومتر مربع على التوالي و سجلت أعلى قيم  23.9كيلومتر مربع و  196.2كيلومتر مربع، بينما تقلصت الأراضي القاحلة والمناطق الزراعية بمقدار 

، بينما تراوحت درجات 2020درجة مئوية في عام  62-61إلى  2000درجة مئوية في عام  45-38ي الأراضي القاحلة من لدرجة حرارة سطح الأرض ف

. وأستنتج أن زيادة المساحات العمرانية هي  2020درجة مئوية في عام  60إلى  2000درجة مئوية في عام  37-36الحرارة في المناطق العمرانية من 

وتتناسب  (NDBI) درجة حرارة سطح الأرض ، كما لوحظ أن درجة حرارة سطح الأرض تتناسب طردياً مع مؤشر البناء الحضريالسبب الرئيسي لزيادة 

وزيادة المساحات  النتائج أهمية تقييم تأثير العمران السريع على البيئة وأهمية التخطيط الحضري وتوضح ،(NDVI) عكسياً مع مؤشر الغطاء النباتي

 التنمية المستدامة .لتحقيق  الخضراء

 


