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ABSTRACT 

 

Nearly half of the world’s population lives near the coasts of oceans and seas. The coastline 

position changes under the influence of multiple natural and anthropogenic factors. Recently, due 

to the global impacts of climate change and population growth, the issue of geomorphological 

changes in coastlines has become more critical. Therefore, the assessment and mapping of 

coastline dynamics is one of the most essential factors for sustainable development goals and 

urban planning. The objectives of this study are to focus on discussing the research progress of 

applications of satellite remote sensing datasets and GIS methods for coastline extraction, 

mapping, and analysis along global coasts. A systematic review and trend analysis of the most 

recent published studies that focused on remote sensing and GIS techniques for assessing coastal 

dynamics were published between 2012 and 2022 along different coasts worldwide. The results 

indicated that multisource and multisensor remote sensing datasets were globally utilized for 

monitoring coastline changes, including (1) medium-resolution imagery such as Sentinel and 

Landsat, (2) SAR and optical high-resolution imagery, (3) modern remote sensing technologies 

such as UAV and LiDAR, and (4) GIS-based methods, spatial analysis, and artificial intelligence. 

This study concludes that coastal change can be tracked using any form of remote sensing, 

including drones, LiDAR, higher resolution imaging, and Landsat imagery. This review provides a 

comprehensive reference for upcoming work on coastal management and exploitation 

development and research, especially for the low elevation coastal zones that are affected by 

coastal hazards. 

Keywords: Coastline changes; Coastal erosion; Coastal hazards; Coastal vulnerability assessment; 

Remote sensing. 
 
 

INTRODUCTION 

 

The boundary between the land and the sea is 

represented by coastal zones. It has less coverage than 

20% of the Earth’s land surface; however, nearly half 

of the world’s population lives next to the coasts of 

oceans and seas (Mentaschi et al., 2018; Crossland et 

al., 2005). Over 1.6 million kilometers of coastline 

exist worldwide, and 84% of all countries have coasts 

(either with inland waters, open oceans, or both) (Melet 

et al., 2020). The shoreline, delineating the interface 

between land and sea, serves as a fundamental 

indicator of environmental shifts, reflecting alterations 

in coastal conditions, including fluvial processes, 

sediment supply, and relative sea level. It stands out as 

one of the highly dynamic coastal geomorphological 

features (Cabezas-Rabadán et al., 2015). The positions 

of coastlines change dramatically in response to several 

natural and anthropogenic factors, including climate 

change, waves and currents, sea level rise, storm surges 

and hurricanes, and human activities (Dewi and Bijker, 

2020).  
 

Climate change has significant impacts on 

shorelines, leading to a phenomenon known as 

shoreline retreat. Shoreline retreat refers to the gradual 

movement of a coastline away from its previous 

position. Several factors associated with climate 

change contribute to this phenomenon, including sea 

level rise, increased storm intensity, melting ice and 

permafrost, and loss of coastal habitats. Approximately 

30% of the global coastline consists of sand and mud 

deposits, including river deltas, which are more 

susceptible and vulnerable to coastal erosion processes 

than rocky and protected coasts (Luijendijk et al., 

2018). Previous studies have indicated that nearly 80% 

of global coasts are in the process of eroding at rates up 

to 10 m/yr. which threatens coastal infrastructures, 

natural resources, coastal tourism, archaeological sites, 

and sustainable coastal planning goals (Pilkey and 

Hume, 2001; Younis et al., 2014; Darwish 2023). 

Recently, remote sensing-based spatiotemporal 

mapping of coastlines has been increasingly utilized for 

navigation, protection, and coastal management 

applications (Di et al., 2003; Liu and Jezek, 20014; Li 

and Damen, 2010).  
 

The availability of continuous monitoring of coastal 

zones using satellite remote sensing time series has 

helped in tracking and quantifying coastal changes. 

Coastline changes are influenced by a variety of natural 

and human-induced factors. These factors can interact 

in complex ways, leading to dynamic changes in 

coastal landscapes, including wave, tidal and siltation 

action (Wu and Hou, 2016; Moore et al., 2013), 

currents (Williams and Kraus, 1999), hurricanes and 

cyclones (Xu, 2018), and sea level rise (List et al., 

1997; Zhou et al., 2013). However, human activities 

along coasts contribute to coastline changes by 

urbanization and residential housing construction, 
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seawalls, groins, jetties, harbor dredging, sea 

enclosures and reclamation, harbor construction, and 

fishpond construction (Zhang et al., 2015; Wu et al., 

2022; AI et al., 2019). River damming is also 

considered one of the most critical anthropogenic 

factors affecting sediment supply, which feeds the 

deltas coasts (Darwish et al., 2017).It is estimated that 

coastal areas lost approximately 28,000 sq. km between 

1984 and 2015, which is twice as much as the land 

gained over the same period (Mentaschi et al., 2018). 

In the United States (US), coastal property losses cost 

billions of dollars (U.S., 2022a). The US spends mil-

lions of dollars annually on beach nourishment, seawall 

construction, groin construction, and other coastal prot-

ecttion devices (U.S., 2022b; Li and Gong, 2016; Xu 

and Gong, 2018; Wu et al., 2014). In Egypt, the 

anticipated expenditure for constructing the sea wall 

along the northern coast is projected to be $1.0 billion 

for a length of 1,000 km (Abd-Elhamid et al., 2015). 

The integration of remote sensing datasets and 

geographic information system (GIS) techniques has 

increased for coastline change analysis and quantif-

ication along different continental coasts due to recent 

progress in geospatial technologies. Along most of the 

world’s coastal regions, the dynamics of coastlines are 

observed and evaluated through the extensive 

application of multisource remote sensing datasets and 

geographic information systems technologies. 

The study of collecting information about objects or 

locations from a distance, usually using aircraft or 

satellites, is known as remote sensing. By identifying 

the energy that is reflected from Earth, remote sensors 

acquire data. Both passive and active forms are 

possible. Remote sensing is being increasingly utilized 

in coastal applications to map coastal geomorphic 

characteristics, track sediment movement, and monitor 

changes to coastlines. Furthermore, satellite inform-

ation can be utilized to minimize erosion and map 

coastal areas (NOAA, 2022). 

Numerous studies have attempted to examine this 

topic and determine the most effective method based 

on a number of computations and algorithms. To ide-

ntify coastal features and patterns, image classi-

fication methods and spectral indices were also applied 

to satellite imagery. Over the past 20 years, a wide 

range of numerical techniques, factors, and algorithms 

have been developed and used on a number of data 

formats, including satellite and aerial photographs, 

optical and radar data, and the most recent high-

resolution images from unmanned aerial vehicles 

(UAVs). 
 

In this study, an analysis of the most recent 

techniques and methods, progress and future trends of 

coastline delineation and automatic extraction from 

remotely sensed data as well as GIS methods for 

coastline quantification and spatiotemporal analysis 

was performed. To achieve the objectives of this study, 

eighty-three global published studies in top indexed 

journals that utilized satellite remote sensing images 

and GIS techniques from 2012 to 2022 were collected, 

as shown in Figure (1).  
 

Additionally, the literatures collected, concerned 

coasts and shoreline detection methods, were classified 

into four parts: i, long-term coastline changes as shown 

in Table (1); ii, short-term coastline changes, presented 

in Table (2), iii, climatological and anthropological 

impacts on coastline changes shown in Table (3), and 

iv, remote sensing and GIS methods displayed in Table 

(4). The rest of this review provides a state-of-the-art 

review of coastline detection methods used in optical 

and radar remote sensing as well as GIS-based 

statistical computational techniques. 
 

Coastline Definition 
 

The coastline is widely recognized as a highly 

dynamic boundary between water and land surfaces, 

making it an important indicator of morphological 

trends (DaSilva et al., 2021). An essential component 

of Integrated Coastal Zone Management (ICZM) is the 

monitoring of the coastline location and the elements 

that influence coastal dynamics at multiple levels 

(Bruno et al., 2016). For the purpose of continuous 

beach monitoring and maintaining its functions of 

protection, recreation, and natural values, the shoreline 

position is very helpful in quantifying historical erosion 

rates and beach width and volume. 
 

 
 

Figure (1): Geographical distribution of the literature described in this study. 
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Table (1): Long-term coastline dynamics: Comparative analysis of costal studies and data extraction methods.  

 
Authors/publication 

year 

Time Period 

covered 

Studied 

Location 
Data Input Extraction methods and Analysis 

Chaaban et al., (2012) 1946-2005 France Aerial Photographs Digitizing, ArcGIS® Modelbuilder 

Pardo-Pascual et al., (2012) 1984-2010 Spain Landsat Imagery Automatic, Subpixel 

Bayram et al., (2013) 1986-2009 Turkey Landsat Imagery Digitizing, Shoreline and LULC) 

Cenci et al., (2013) 1984-2011 Portugal Landsat Imagery DVI threshold, GIS-based DSAS 

Ford et al., (2013) 1945-2012 Marshall Island Aerial Photographs HR Images Digitizing, GIS-based DSAS 

Aps et al., (2014) 1995-2012 Spain Landsat Imagery Semiautomatic, ESI, Internet GIS technologies 

El-Asmar et al., (2014) 1973-2011 Egypt Landsat, SPOT, and Egysat-1 Digitizing, Change Detection 

Kaiser (2014) 1990-2005 Egypt Landsat Imagery Digitizing, GENESIS Model 

Puig et al., (2014) 1956-2010 Spain Aerial Photographs Digitizing, GIS-based DSAS, Storm analysis 

Suo and Zhang (2015) 1990-2010 China Landsat Imagery Semiautomatic, Coastline Tortuosity Index 

Adnan et al., (2016) 1987-2011 Australia Aerial Photographs 
Semiautomatic, Edge of Vegetation Line (EVL)- 

GIS-based DSAS 

Bruno et al., (2016) 2009-2015 Italy SAR COSMO-Beach 

Li and Gong (2016) 1984-2013 USA Landsat Imagery Semiautomatic, AWEI Index 

Darwish et al., (2017) 1945-2015 Egypt Landsat Imagery Semiautomatic NDWI, MNDWI, GIS-based DSAS 

Evadzi et al., (2017) 1974-2015 Ghana Landsat, DEM, TOPEX/Poseidon Semiautomatic, WLR, OLS, GIS-based DSAS 

Sagar et al., (2017) 1987-2015 Australia Landsat Imagery Semiautomatic, NDWI, GPS RTK 

Collin et al., (2018) 1969-2013 France Aerial Photographs, Pleiades-1 Digitizing, DSAS Bathymetry modelling 

Li et al., (2018) 1974-2014 China Landsat Imagery Semiautomatic Extract, NDWI, GIS 

Paniagua-Arroyave et al., 

(2018) 
1938-2009 Caribbean Aerial Photographs Mapping Cliff-retreat, GIS-based DSAS 

Wang et al., (2018) 1986-2016 China Landsat, GEE Semiautomatic, NDVI , EVI, LSWI, MNDWI 

Chaumillon et al., (2019) 1840-2016 France 
Aerial Photographs, Satellite 

Images. 
Digitizing, DSAS, Topographic profiles 

Do et al., (2019) 1985-2010 Holland Landsat, LIDAR JARKUS-derived shoreline 

Jolivet et al., (2019) 1955-2017 Amazon Aerial Photographs Satellite Images GIS –based DSAS 

Robin et al., (2019) 1950-2011 France Aerial Photographs Digitizing,Beach/Dune Shoreline 

Stéphan et al., (2019) 1949-2009 France Aerial Photographs Digitizing, GIS-based DSAS 

Cao et al., (2020) 1985-2017 China Landsat, GEE Semiautomatic, MNDWI 

Carvalho and Guerra 

(2020) 
1986-2018 Brazil Landsat Imagery GIS-based CVI, Natural and Social 

Diniz et al., (2020) 1984-2017 Brazil Landsat Imagery GNSS GPS, PPK 

Li et al., (2020) 2002-2018 China Landsat Imagery Semiautomatic, NDWI, ELPC Model 

Liu et al., (2020a) 1985-2017 China Landsat Imagery Semiautomatic, GIS analysis 

Liu et al., (2020b) 1976-2017 China Landsat Imagery Semiautomatic, GIS-DSAS 

Lymburner et al., (2020) 1987-2016 Australia Landsat, Digital Earth Semiautomatic, NDVI 

Reshma and Murali (2018) 1973-2014 India Landsat Semiautomatic  

Song et al., (2020) 2000-2015 Southeast Asia Landsat, Google Earth, HR Imagery Semiautomatic, GIS-DSAS 

Abdurrahman et al., (2021) 1996-2020 Indonesia Landsat, Google Earth Semiautomatic, DSAS 

Balle et al., (2021) 1988-2018 Benin SPOT and Sentinel-2 Detect High-Water Line, DSAS 

Bishop-Taylor et al.,(2021) 1988-2019 Australia Landsat Imagery Semiautomatic, MNDWI 

DaSilva et al., (2021) 1975-2017 Australia Aerial, RapidEye Semiautomatic, GIS-DSAS 

Kim et al., (2021) 1980-2017 Korea Aerial Photographs Modelling Approach 

González Rodríguez et al., 

(2021) 
1780-2018 Colombia Google Earth AutoCAD 

Teixeira et al., (2021) 1988-2019 Brazilian Landsat Imagery Erosion Geoindicators, ENVI 5.5 

Yun et al., (2021) 1986-2020 South Korea Aerial Images, UAV’s Semiautomatic, GIS-DSAS 

Renard et al., (2022) 1950-2017 Guadeloupian 
High-Resolution, Aerial 

Photography 
Semiautomatic, GIS-DSAS 

Yang et al.,(2022) 1986-2020 NE US Landsat Imagery NDVI, MNDWI, DECODE 
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Table (2): Short-term Coastline Dynamics Studies: Comparative analysis of costal studies and data extraction 

methods.  
 
 

 

Authors/ publication year 
Time Period 

covered 
Location Data Input Coastline Extraction method and Analysis 

Aly et al. (2012) 1993-2000 Egypt InSAR Digitizing, Remote Sensing, Image Processing 

Araújo  et al., (2014) 2011 Portuguese LiDAR Automatic, GENESIS 

Paine et al., (2017) 2010-2012 Texas LIDAR Automatic, GIS-Based DSAS 

Nijland et al., (2017) 2012 Canada LIDAR Semiautomatic 

Kim et al., (2017) 2010-2013 Korea 
Airborne LiDAR 

Bathymetry 

GIS, Video Monitoring; Geospatial Information of 3D Point 

Cloud Data 

Le Bas and Levoy (2018) 2011-2017 France LiDAR Semiautomatic, GIS-Based DSAS 

Terefenko et al., (2018) 2016-2017 Poland LiDAR COAMPS 

Kim et al., (2018) 2016 Korea LiDAR RTK-GNSS 

Stéphan et al., (2019) 2006-2009 France Aerial Photographs Semiautomatic 

Waghmare et al., (2020) 2016-2017 India Sentinel-2A GIS-Based DSAS- Subtraction of Images 

Wang et al., (2020) 2014-2018 China Landsat Imagery Semiautomatic Water Edges Extracted 

Al-Aesawi et al., (2020) 1971-2016 Shatt Al-Arab Landsat and Admiralty maps DSAS, Geo informatics Analyses, ERDAS Imagine 

 
Table (3): Climate and Anthropogenic Impacts of Coastline Dynamics Studies:. 
 

 
Table (4): Comparative Analysis of Coastal studies and data extraction techniques for Coastline mapping. 
 

 

Authors/ publication year Location Data Input 
Coastline 

Mapping 
Methods 

Luque et al., (2012) Spain LiDAR Automatic Automatic Vertical Datum 

Guastella et al., (2014) S. Africa Google Earth Digitizing No Data 

Hereher (2015) Egypt Landsat Imagery Semiautomatic CVI 

Hsiao et al., (2016) China Satellite Altimetry, HR imagery Digitizing No Data 

Gerrity et al., (2018) San Mateo Google Earth Images Semiautomatic CVI 

Jun et al., (2018) Korea Drone Terrestrial LiDAR 3D DSM CAD Drone (UAV), Pix4Dmapper 

Kim et al., (2018) Korea Mobile LiDAR Automatic RTKGNSS 

Wozencraft et al., (2018) USA LiDAR, High-Resolution Aerial Imagery Semiautomatic GIS Spatial Index 

Dai et al., (2019) USA Quick Bird, GeoEye-1, WorldView-2 Semiautomatic 
"NDWI, SAM, Automated Water 

Extraction Index (AWEI)" 

Nijland et al., (2019) Canada Landsat Imagery, GEE WorldView-2 Semiautomatic NDVI 

Poitevin et al., (2019) France 
Space-Borne Geodetic Methods, In SAR, 

GPS 
Semiautomatic 

Vertical Land Motion & Relative Sea-

Level Changes 

Fan et al., (2020) China Landsat, LiDAR Automatic GIS 

Jaramillo et al., (2020) Indonesia Aerial Photographs 
Video-Camera, 

Satellite Images 

Subpixel Technique, SHOREX 

algorithm 

Tak et al., (2020) Korea Drone, Terrestrial LiDAR Semiautomatic 
RTK GPS, Drone, CCTV, Digital 
Surface Model (DSM) 

Hossain et al., (2021) China IKONOS Semiautomatic Fuzzy Shoreline Map 

Zhao et al., (2021)  - Point Cloud, LIDAR W/L Discriminator Point Cloud Clustering 

Mao et al., (2022) World SRTM, GEE) 
Vector coastline 

Open Street Map 
Indices, Machine Learning 

Seale et al., (2022) World Sentinel-2, Landsat, GEE 
Automatic, Water 

Edges 
Deep Learning CNN, QGIS 

 

Authors/ publication year 
Time Period 

covered 
Location Data Input Coastline Extraction method and Analysis 

Puig et al., (2014) 1956-2010 Spain Aerial Photographs O Digitizing DSAS, Storm analysis 

Hereher (2015) 2015 Egypt Landsat Imagery Manual GIS-based CVI, Climate Change 

Albuquerque et al., (2018) 2016 Brazil UAV’s Meteo-Oceanographic Events 

Kang et al., (2018) 2012 Korea IPCC, SLR Disaster Impact Index (CDII), GIS, Storms 

Ritphring et al., (2018) Up-to-2100 Thailand IPCC Projections of Future, GIS, Sea Level Rise 

Terefenko et al., (2018) 2016-2017 Poland LiDAR Storm analysis 

Carvalho and Guerra (2020) 1986-2018 Brazil Landsat Imagery GIS-CVI, Natural and Social Impacts 

Kelly and Gontz (2020) 2019 Australia LIDAR, Planet Scope DSAS, Tropical Cyclone Oma 

Nagdee et al., (2020) 1973-2004 Barbados Aerial Photographs DSAS, Hurricanes Allen1980, Ivan 2004 

Wang et al., (2020) 2018 Florida Airborne LIDAR Storm Wave Generated, Hurricane Michael 

Thakare et al., (2021) 1973-2019 India Landsat, ASTER ERDAS IMAGINE ArcGIS- CVI 

Peng et al., (2021) 2008–2016 Australia Satellite altimeter Jason-1 Sea Level Rise 

Balstrøm and Kirby (2022) 2007-2015 Denmark Digital Terrain Model DHyMSea, Esri's ArcGIS Pro 

Jose and Carlin (2022) 2004 Florida LIDAR, Google Earth Storm- Hurricane Season 

Youn and Zarillo (2022) 1972-2013 Korea Google Earth Digitized Orthogonal Lines, Typhoons Flooding 
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Shoreline management is essential for navigation, 

coastal resource management, and coastal planning and 

development (Arnous et al., 2022). Understanding the 

complexities of coastal dynamics is essential for 

effective coastal management and sustainable 

development. 
 

Coastline Types and Indicators 

Geology is the essential factor influencing coastline 

dynamics. There is no similar response of silty, sandy,  

biological, rocky and artificially protected shores to 

coastal processes, climate change and anthropogenic 

activities. Shoreline indicators are crucial in assessing 

the impacts of climate change on coastal areas. 

Changes in shorelines can be indicative of various 

climate-related processes, including sea level rise, 

increased storm intensity, and alterations in 

precipitation patterns. In this study, different types of 

coasts were analyzed around the world, such as sandy 

coasts in the southern and northern Shandong 

Peninsula in China (Yue et al., 2021), the silty Nile 

Delta coast between 1945 and 2015 (Darwish et al., 

2017), and Brittany sandy/gravel beaches in western 

France (Stéphan et al., 2019). The coral reefs coast 

along Atoll reef islands along Takapoto Atoll in French 

Polynesia (Collin et al., 2018). Modifications of 

coastlines can cause damage to coastal resources, such 

as coastal mangroves along the Egyptian Red Sea coast 

(Moustafa et al., 2023) and coral reefs at Moorea 

Island, French Polynesia (Gasc et al., 2021). The rocky 

cliff retreat occurs along the western coast along the 

Caribbean coast of Colombia (Paniagua-Arroyave et 

al., 2018). The coastal changes along the Artificially 

protected coastline of the South Korean coastline were 

analyzed between 1970 and 2010 (Lee et al., 2020). 
 

Multispectral Imagery for Shoreline Monitoring 

Coastal environmental change has been continuously 

observed using optical remote sensing satellites with 

moderate and high spatial resolutions. When compared 

to field surveys, remote sensing has been shown to be 

an effective means of tracking coastal dynamics across 

a range of spatial scales. One of the main benefits of 

satellite remote sensing images is their global coverage, 

which includes frequent coverage of most coasts in all 

seasons and climates. However, because public 

resolution is too coarse to offer information on most 

coastal morphodynamic changes, mid-resolution sate-

llite images have been overlooked. 

Satellite-Remote Sensing Imaging Systems 

Refer to the technology and instruments used to 

capture information about Earth's surface, atmosphere, 

and oceans from space. These systems utilize satellites 

equipped with various sensors to collect data in the 

form of images or other measurements. Medium-

resolution satellite imagery has been widely used in 

several studies to assess and map coastline dynamics 

along the world’s coasts. Landsat imagery has been the 

main data source for many coastal studies from 1972 to 

now (Pardo-Pascual et al., 2012; Bayram et al., 2013; 

Cenci et al., 2013; Aps et al., 2014; El-Asmar et al., 

2014; Kaiser, 2014; Hereher, 2015; Suo and Zhang, 

2015; Li and Gong, 2016; Evadzi et al., 2017; Darwish 

et al., 2017; Sagar et al., 2017; Li et al., 2018; Wang et 

al., 2018; Do et al., 2019; Nijland et al., 2019; Al-

Aesawi et al., 2020; Carvalho and Guerra, 2020; Cao et 

al., 2020; Diniz et al., 2020; Fan et al., 2020; Lymb-

urner et al., 2020; Reshma and Murali, 2018; Li et al., 

2020; Liu et al., 2020; Song et al., 2020; Abdurrahman 

et al., 2021; Bishop–Taylor et al., 2021; Thakare and 

Shitole, 2021; Yang et al., 2022). As the spatial resolu-

tion of Landsat improved with new generations of sat-

ellite sensors, researchers found it to be an increasingly 

useful tool for assessing coastal changes. On the other 

hand, Sentinel imagery, with a 10 m foot-print, was 

used to extract coastal features using the high-water 

line (Balle et al., 2021; Waghmare et al., 2020). SPOT-

4 images taken between 2006 and 2011 were used to 

quantify coastline changes along the Damietta 

promontory coast in Egypt (El-Asmar et al., 2014). 

High-resolution satellite imagery, such as worldview 

and IKONOS imagery, has become very common for 

coastline mapping and change detection applications 

(Hossain et al., 2021). It was used for assessing coastal 

dynamics in several locations around the world, 

including the Marshall Islands in France, the 

Colombian coasts and the Chinese coasts (Ford, 2013; 

Giraud-Renard et al., 2022; Hsiao et al., 2016). IKO-

NOS (Hossain et al., 2021), PlanetScope (Kelly and 

Gontz, 2020), Pleiades-1 (Collin et al., 2018), 

RapidEye (DaSilva et al., 2021), QuickBird, World-

view-2 (Dai et al., 2019; Nijland et al., 2019), and 

high-resolution Google Earth imagery were used to 

study coasts in Indonesia, Colombia, Korea, USA and 

South Africa (Abdurrahman et al., 2021; González 

Rodríguez et al., 2021; Youn and Zarillo, 2022; Guas-

tella et al., 2014; Gerrity et al., 2018). IKONOS 

imagery, with a footprint of one meter, was used to 

map coastlines of the South China Sea (Hossain et al., 

2021). The high spatial and temporal resolution of 

Planet Scope imagery enabled mapping of the high-

water line (Kelly and Gontz, 2020). 
 

 Non-Satellite Imaging Systems 

 Non-satellite imaging systems refer to technologies 

and instruments that capture images or data about the 

Earth's surface, atmosphere, or other targets without 

relying on satellites. These systems are often ground-

based or airborne, and they serve various purposes in 

fields such as research, surveillance, monitoring, and 

industry. Aerial photographs are considered one of the 

most valuable and accurate geospatial data used to 

assess and map the historical changes in coastlines 

since the 1930s. Coastlines were manually traced from 

aerial photographs taken in 1945 along the Marshall 

Islands in the Pacific Ocean (Ford, 2013). Chaaban et 

al. (2012) assessed coastal changes in northern France 

based on aerial missions that began in 1946 and lasted 

until 2005. Tracing of aerial photographs was used to 

assess rising sea level along Wotje Atoll in the 

Marshall Islands (Ford, 2013). Other examples have 

used aerial photographs to detect coastal changes, 

including North Keeling Island in Australia (1987-

2011) (Adnan et al., 2016), (1938-2009) along the 

Caribbean Coast of Colombia (Paniagua-Arroyave et 
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al., 2018), Takapoto Atoll in France (1969-2013) 

(Collin et al., 2018), (1840-2016) (Chaumillon et al., 

2019), (1949-2009) along the Brittany Coast in 

northern France (Stéphan et al., 2019), and (1975-

2005) along Cape Jaffa, South Australia (DaSilva et 

al., 2021). Moreover, aerial photographs were widely 

used to assess the impacts of extreme climatic events 

such as hurricanes along the Barbados coast in the 

Caribbean Sea between 1973 and 2004 (Nagdee et al., 

2020). Furthermore, the integration of aerial 

photographs with other spatial data sources was used to 

assess shoreline evolution and surface changes along 

the Pays de la Loire coast in western France (1950-

2010) (Robin et al., 2019). 

Drones can deploy all forms of remote sensing, 

including multispectral scanners, LiDAR, thermal 

infrared, digital photography and RADAR. Drones 

have been used in several studies of coastal dynamics 

(Yun et al., 2021; Giraud-Renard et al., 2022; 

Albuquerque et al., 2018; Wozencraft et al., 2018). The 

combination of historic digitized aerial photographs 

taken in 1986 with drone-based digital imagery taken 

in 2020 was used to map coastline changes at Chollipo 

Beach in South Korea (Yun et al., 2021). Video 

monitoring systems are ground-based cameras that 

have been recently used to accurately monitor beach 

erosion and shoreline changes along different coasts 

worldwide (Arriaga et al., 2022). 
 

Coastline Extraction Techniques and Mapping 

The utilization of geographic information science 

and remote sensing technology has increased globally 

in the last decade for coastline extraction, mapping and 

assessment of morph dynamics over short and long 

time periods. Different techniques and methods for 

coastline delineation were selected from the literature 

analysis. 

Manual Shoreline Delineation 

It is the first delineation method for coastline 

mapping from aerial photographs and topographic 

maps (Chaaban et al., 2012; Ford, 2013). Manual digit-

izing of a coastline is tedious and subject to interpret-

tation error. It is particularly difficult to delineate the 

coastline from wet sand in clear shallow water. There-

fore, several methods to automatically extract coast-

lines from ocean edges have been developed. Figures 

(2) and (3) show examples of coastline mapping over 

time. 
 

Remote Sensing Indices Semiautomatic Shoreline 

Extraction 

This approach has been applied in several studies 

(Sagar et al., 2017; Darwish et al., 2017; Cao et al., 

2020). Spectral indices were used to differentiate coast-

lines from satellite images; the normalized diff-erence 

water index (NDWI), modified normalized difference 

water index (MNDWI), automated water extraction 

index (AWEI), and other indices were applied to 

identify coastlines. Water index calculated as follow:  

 
 

Where, 𝜌Green, is the top-of-atmosphere of the green 

band and 𝜌NIR, is that of the near infrared band.  

 
 

Figure (2): Rosetta Promontory in Egypt Retreating Between 1945 

(Surveyed) and 2015 (Landsat), After (Darwish et al., 2017). 

 

 
 

 
 

Figure (3): Semi-Automatic Coastline mapping along a) Marshall 
Islands in France Between 1945 and 2012 using Aerial 

Photographs, Landsat, and Quick bird Imagery, After (Ford, 

2013). B) Yellow River Delta Coastline Changes (1976–2017) 
after (Liu et al., 2020). 

 

Water bodies are expected to yield a positive NDWI, 

while, modified normalized difference water index 

(MNDWI) was calculated as follow: 
 

 

A 

B 
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The normalized difference vegetation index (NDVI) 

and enhanced vegetation index (EVI) were used to 

differentiate tidal flats from open water between high 

and low water lines (Wang et al., 2018) . Several 

studies have used the NDVI and EVI indices for 

mapping water bodies and vegetated coastal areas 

(Lymburner et al., 2020; Wang et al., 2018; Yang et 

al., 2022; Nijland et al., 2019). The EVI was calculated 

as follow: 
 

  
 

Where, 𝜌blue (450–520 nm), 𝜌green (520–600 nm), 

𝜌red (630–690 nm), 𝜌near-infrared (NIR: 760–900 

nm). 

The spectral algorithm of NDVI was utilized to 

distinguish between water, beach and vegetation. The 

land surface water index (LSWI) is hyper-sensitive to 

both soil moisture and plant water content. It is 

computed by averaging the ratio within the near-IR and 

shortwave infrared bands (Wang et al., 2018). 
 

The NDVI algorithm and The land surface water index 

(LSWI) were calculated as follow: 
 

 

 
 

 

 
 

Where, 𝜌shortwave infrared (SWIR: 1550–1750 nm) 

bands of Landsat TM/ETM+/OLI imagery were used. 
 

Automated Water Extraction Index (AWEI) 

This index provides a higher accuracy and the most 

stable threshold to classify pixels at the edge of the 

water surface (Dai et al., 2019) and calculated as: 
 

 
 

Where, 𝜌 represents the surface reflectance value of 

spectral bands of Landsat TM/ETM+ imagery (Li and 

Gong, 2016). 
 

Automatic Coastline extraction using edge detection 
 

Detection of high-water lines using spatial filtering 

is a very important approach for automatic shoreline 

mapping and has been utilized by several researchers 

(Paravolidakis et al., 2018; Balle et al., 2021; Adnan et 

al., 2016). 
 

Sea-land segmentation (SLS) 
 

Sea-land segmentation of remote sensing images is 

of great significance to the dynamic monitoring of 

coastlines (Cui et al., 2021). The goal of sea-land 

segmentation (SLS) is to map and isolate the land and 

sea zones from coastal remote sensing imagery 

(Aghdami-Nia et al., 2022). In numerous coastal and 

environmental studies, such as coastline extraction, 

coastal erosion analysis, coastal area monitoring, and 

ship or iceberg identification, sea-land segmentation 

(SLS) plays a vital role in remote sensing activities. 
 

Polarization Methods for SAR Data 

 Coastline extraction using SAR data involves the 

interpretation of radar backscatter responses from 

various surfaces. Different polarization methods 

provide varying sensitivities to surface characteristics, 

allowing for the discrimination of water, land, and 

other features. Integrating polarization information 

with other SAR image processing techniques enhances 

the accuracy of coastline extraction and supports 

applications such as environmental monitoring, change 

detection, and disaster response in coastal areas. This 

approach was used by several studies to detect the 

coastline for change analysis in different locations 

worldwide; Bruno et al. (2016) applied it in Italy, Aly 

et al. (2012) applied it in Egypt, and Poitevin et al. 

(2019) used this approach in France for sea level 

change analysis. 
 

Change Detection 

The use of digital image processing has increasingly 

utilized for coastal environmental change, land use 

cover change and integrated coastal zone management. 

Both pixel and post classification techniques were 

applied to assess the influence of land use change, 

urbanization, coastal protection works and coastline 

dynamics. Murali et al. (2020) applied a spatiotemporal 

change detection approach to assess changes in the 

Godavari Delta region on the east coast of India 

between 1973 and 2019. Abualtayef et al. (2021) 

applied a change detection approach for assessing the 

Gaza coast between 2004 and 2016 using SPOT-5, 

Landsat and Quick Bird and GIS tools. 
 

Image Classification 

Satellite image classification for coastline change 

detection involves using machine learning and image 

processing techniques to analyze satellite imagery and 

identify changes in the coastal area over time. The goal 

is to classify different land cover types and detect 

alterations in the coastline due to factors such as 

erosion, accretion, or human activities. The classify-

cation makes a boundary between land and sea, which 

is the coastline (Abdurrahman et al., 2021). The 

subpixel classification technique is a high-precision 

geometric method for automated shoreline detection 

from Landsat TM and ETM
+
 imagery. The method-

ology is based on the application of an algorithm that 

ensures accurate image geometric registration and the 

use of a new algorithm for subpixel shoreline extra-

ction (Ford, 2013). The subpixel shoreline acquisition 

method (SHOREX algorithm) was used to assess 

shoreline evolution using satellite-derived shorelines 

(Jaramillo et al., 2020). 
 

Coastline Uncertainty and Positional Accuracy 

Assessment 

The uncertainty in the shoreline’s position involves 

potential location errors. It is equal to the square root of 

the sum of squared errors, is expressed in meters (m), 

and can be measured from three sources of error; the 

first source is the aerial pixel size. The second is the 

precision of the orthorectification or georeferencing 

process (RMS errors) which can be calculation as the 

equation: 

 
Where, the distance that exists between the 

baseline and the obtained coastline at transect i is 
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denoted by D(x,i), the distance that is linear between 

the baseline and the reference coastline at transect i is 

represented by D(r,i), and the total number of transects 

is represented by t. 

The accuracy of manually digitizing shorelines 

comes last (Robin et al., 2019). Surveying maps and 

aerial photographs were employed to evaluate seven 

causes of uncertainty concerning the shoreline's 

position, five of which are appropriate for aerial 

photographs: errors related to pixels, rectification, 

digitization, seasonality, and tidal fluctuation (Ford, 

2013) with the following equation: 
 

 
 

 

Where, Ep is the error pixel, Eo is the RMS error (m), 

Ed is the error digitizing (m), and EPS is the shoreline 

position uncertainty (m) as done by Robin et al., 

(2019). 

The uncertainty in the reference position of the 

shoreline was estimated using aerial photos that were 

used as base material for georeferencing at the subpixel 

level (Pardo-Pascual et al., 2012). The RMSE was 

calculated for uncertainty analysis (Li and Gong, 

2016). The most effective method of checking the 

uncertainty in the precise position of the coast is 

through RTK-GPS surveying (Sagar et al., 2017). 
 

GIS-Based spatial computation of coastline change 

The digital shoreline analysis system (DSAS) is one 

of the most broadly utilized techniques for the analysis 

of such studies in the world. The Digital Shoreline 

Analysis System (DSAS) is a GIS-based system establ- 

 

ishe by the USGS. It calculates gaps among the 

coastline positions during defined periods. DSAS 5.0 

statistical methods include net shore movement (NSM) 

related to date, and only two shorelines require the total 

distance between the earliest and the latest coastline in 

each transect. The end point rate (EPR) statistical 

parameter describes the spatial patterns of shoreline 

change. EPR measures shoreline change by dividing 

the distance of the coastline between its initial and the 

most current position of coastline as followed: 
 

 
 
 

 

The long-term rate of variation is determined 

through a linear regression rate (LRR), which 

integrates the current data. In the present study, several 

studies used DSAS for the quantitative assessment of 

coastline dynamics (Cenci et al., 2013; Puig et al., 

2014; Darwish et al., 2017, Jolivet et al., 2019; Al-

Aesawi et al., 2020; Kelly and Gontz, 2020; Darwish 

and Smith, 2021; Darwish and Smith, 2023) (Figure 4). 
 

The automated extraction of coastlines using various 

pixel and subpixel techniques, along with an uncer-

tainty assessment of the extracted coastlines and the 

calculation of the end point rate (EPR), is demonst-

rated. Figure (5) illustrates the perpendicular techni-

ques employed in DSAS for coastline change analysis 

in various global locations. GIS-based shoreline predi-

ction modeling involves the use of geographic inform-

ation systems (GIS) to develop models that predict 

changes in shoreline positions over time. 

 

 
 

Figure (4): Subfigures (a,b,c) show automatic shoreline extraction at different pixel and subpixel techniques, d) show 

positional accuracy assessment of automatic extracted shorelines (after (Pardo-Pascual et al., 2012), and e) DSAS based 

spatial computational techniques, after https://www.usgs.gov/centers/whcmsc/science/digital-shoreline-analysis-system-

dsas.  

https://www.usgs.gov/centers/whcmsc/science/digital-shoreline-analysis-system-dsas
https://www.usgs.gov/centers/whcmsc/science/digital-shoreline-analysis-system-dsas
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These models are valuable tools for coastal 

management, environmental planning, and risk 

assessment. Shoreline prediction provides a compre-

hensive approach to understanding and managing 

coastal environments. It helps stake-holders anticipate 

future changes, assess risks, and implement strategies 

to mitigate the impacts of coastal dynamics. 
 

Artificial Intelligence 

 Artificial intelligence (AI) has the potential to 

significantly enhance coastal change assessment by 

automating processes, extracting valuable insights from 

large datasets, and providing more accurate predictions. 

Machine learning (ML) techniques can be effectively 

employed for automatic detection of coastlines using 

various types of geospatial data, including satellite 

imagery, aerial photography, or LiDAR data (Seale et 

al., 2022; Jaramillo et al., 2022; Mao et al., 2022). 

Both machine and deep learning approaches have been 

used for coastline detection (Seale et al., 2022; Mao et 

al., 2022). Deep learning was used for automated extra-

ction of coastline morphology data from Sentinel-2 

images, and four convolutional neural network (CNN) 

models, categorical cross-entropy loss, Sørensen–Dice 

loss and two novel loss functions, gave optimistic 

results for water/land separation (Seale et al., 2022). A 

Random Forest model utilizing the first geomorphic 

Principal Component Analysis (PCA) component was 

employed for the global prediction of coastal geom-

orphic classification. Machine learning methods effect-

ively discerned beaches, bedrock, and wetlands within 

various coastal systems on a global scale ranging from 

56° S to 60° N (Jaramillo et al., 2022). A flowchart 

illustrating the utilization of machine learning 

(ML)/deep learning (DL) techniques for analyzing 

coastal changes is depicted in Figure (6). 
 

 
 

Figure (5). Examples of applied transforms of DSAS techniques. (a) 
French coast after (Ford, 2013), and (b) Yellow river delta after (Liu 

et al., 2020b). 
 

 

 
 

Figure (6): Flowchart of using machine learning/ deep learning Models for global coastal geomorphology, after (Mao et al., 2022). 
 
[

 

Spatial Analyses in Coastal Management 

This study analyzed eighty-three publications on the 

topic of remote sensing and GIS technology of coastal 

monitoring published between 2012 and 2022. The 

statistical analysis of the global distribution of the lite-

rature shows three groups. The first group represents 

47% of the studies performed in four countries: China, 

Spain China, Spain, South Korea and France. 
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The second group consisted of the USA, Australia, 

Brazil and Egypt, which comprised 28% of the 

published studies. The last group was composed of 

thirteen countries: Turkey, Benin, Canada, the Carib-

bean, Colombia, Ghana, Holland, India, Indo-nesia, 

Italy, the Marshall Islands, Poland, and Portugal, which 

comprised 25% of the studies. The following is a 

summary of studies published by continent, as shown 

in Figures (7) and (8). 

Long-term Coastline Dynamics 

Asian Coastline 

The results indicated that Asian coasts were one of 

the highest global studies assessed in this study, and 

Landsat multi temporal images, Google Earth images, 

aerial photographs, and drone imagery were the 

essential datasets for coastal change assessment during 

the period from 1973 to 2020 along the Delta, Bays, 

Harbors, and Tidal Flats coasts. 

In China, the coastal change in the East China Sea 

between 1985 and 2017 was assessed using Landsat 

imagery. The study detected changes in coastlines and 

tidal flats, and the results indicated that tidal flats 

decreased by 6%, while the land area increased by 18% 

(Cao et al., 2020). This area has been subjected to 

infilling for fish farming and other agricultural 

activities. Spatiotemporal dynamic assessments of 

coastal tidal flats along China’s coasts between 1986 

and 2016 were studied using Landsat time series. The 

results indicated that due to intensive and ecological 

water diversion projects, tidal flats were converted into 

aquatic farms and saltpans. In addition, a large area of 

surface water (approximately 3.5 × 107 m3) was added 

to the Yellow River Delta in 2011 (Wang et al., 2018). 
 

Landsat imagery (30 m footprint) was used to assess 

the relationship between human activities and natural 

coastline changes in Xiangshan Harbor in China 

between 1974 and 2014. Erosion occurred for five 

periods (1974-82, 1982-90, 1990-98, 1998-2006, and 

2006-2014), representing losses of 3.8 km, 4.6 km, 4.0 

km, 0.5 km and 0.6 km/yr., respectively. The average 

rate of erosion was 2.7 km/yr. due to human activities 

(Li et al., 2018). Coastline changes along Laizhou Bay 

in China from 1985 to 2017 showed an increase in coa 

astline length (from 460 km to 686 km), with a total 

increase of 226 km (Liu et al., 2020).  
 

Multi temporal Landsat imagery was utilized to 

monitor human-induced changes on the Ningbo coast-

line in China between 2002 and 2018, and the results 

indicated that the length of the coastline increased from 

176 km to 219 km (Li et al., 2020).  

 

 
 

Figure (7): Contribution of global coasts in literature reviews 

 

 
 

 

Figure (8): Distribution of Long-Term study periods across world countries. 
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Landsat imagery was used to extract and assess the 

coastline dynamics of mainland southeast Asia 

between 2000 and 2015 based on Google Earth images 

and the global distribution of mangrove data. The 

results showed that while the natural coastline length 

decreased from 15,440 km to 14,909 km, artificial 

coastlines increased from 3088 km to 3985 km. The 

major observed changes were in Myanmar, Vietnam, 

and Malaysia (Song et al., 2020). 
 

In Indonesia, analysis of coastal dynamics was 

carried out using a combination of Landsat and Google 

Earth imagery along the Cirebon coast between 1996 

and 2020. Accretion averaged 5 m/yr., but 29% of the 

coastline eroded during the same time (Abdurrahman et 

al., 2021) (Figure 9). The coastline change in South 

Korea was detected by comparing manned aerial 

photographs taken in 1986 with drone-based aerial 

photographs taken in 2020. The results indicated that 

coastlines accreted 100 m, and their elevation increased 

4.9 m (Yun et al., 2021). Change analysis of the 

Krishna-Godavari delta region on the east coast of 

India from 1973 to 2014 using Landsat imagery. The 

results show that accretion occurred due to artificial 

spits and sand bars. It was observed that during the 40 

years of analysis of the Godavari Delta River mouths, 

all were eroding. They included Nilarevu, which 

eroded 781 m; Gautami, which eroded 2.2 km; 

Vainateyam, which eroded 463 m; and Vasishta, which 

eroded 320 m. The Krishna delta accreted between 

1973 and 1993 (Reshma and Murali, 2018). 
 

Australian Coastline 

Long-term coastal change studies along Australian 

coasts have utilized a combination of multi temporal 

Landsat imagery as well as aerial photographs for a 

period extended from 1987 to 2019. Spectral indices, a 

GIS-based digital shoreline analysis system and a deep 

learning approach were used for shoreline change 

analysis. A multi decadal study of mangrove vegetation 

change along the Australian mainland and the 

Tasmanian coastline was performed for the period 

1987 to 2016 using Landsat imagery. The study found 

that there were many changes, mainly losses, in 

mangroves along the northern Australian coastline 

(Lymburner et al., 2020). 
 

Landsat imagery taken between 1988 and 2019 was 

extracted from the Landsat 5, 7, and 8 datasets and 

downloaded from Digital Earth Australia’s data cube. 

Python programming, subpixels and the MNDWI were 

used to analyze the coastlines. The results indicated 

that 22% of Australia’s sandy nonrocky coastline either 

eroded or accreted; the higher erosion rates were -3.5 

m/yr. along the southern Van Diemen Gulf coast in the 

northwestern Australian coast, and -14.5 m/yr. along 

Point Stuart in the Northern Territory. The average 

accretion rate was +1.7 m/yr. along the mangrove coast 

of the southern Carpentaria Gulf with a maximum of 

9.8 m/yr. (Bishop–Taylor et al., 2021) (Figure 10). The 

coastal dynamics of the Cape Jaffa Marina and canal 

estate in South Australia were studied using aerial 

photography taken between 1975 and 2005 using ML 

techniques. The results showed that accretion occurred

updrift along the marina’s entrance, and erosion 

occurred at the marina’s walls and entrance (DaSilva et 

al., 2021). 
 

European Coastline 

Remote sensing plays a crucial role in monitoring 

and managing European coastlines, providing valuable 

information for environmental protection, resource 

management, and hazard assessment. European coast-

lines are diverse, facing challenges such as erosion, 

sea-level rise, habitat degradation, and human active-

ties. The coastline dynamics of northern France were 

assessed over a nearly 60-year period from 1946 to 

2005 using aerial photographs, and the results showed 

that the Hardelot and Sainte Cécile coasts were eroding 

at 82% of the locations (Chaaban et al., 2012). Chan-

ges in coastlines between 1950 and 2010 along 

France’s west coast were assessed using aerial photo-

graphy. The results indicated that 45 km of coast 

accreted, 78 km were stable and 46 km eroded. There 

was 2.8 km
2
 of accreting surface and 1.1 km

2
 of 

eroding surface (Robin et al., 2019). 460 km of coast-

line along the southwestern France coast used maps 

published in 1840 and aerial photographs taken in 

1945, 1973, 2000 and 2010) and satellite images taken 

in 2014 and 2016. The maximum mean erosion rate (14 

m/yr.) was observed to the south of the Arvert Penin-

sula in southwestern France between 1999 and 2017 

(Figure 11). 
 

Long-term coastal accumulation in Brittany was 

studied. The researchers compared two sets of aerial 

photographs taken between 1949 and 2009. The results 

showed that 38% of the coasts were stable and 27% 

accreted (Stéphan et al., 2019). Figure (12) shows the 

multi-temporal coastline change analysis along the SW 

French coast from 1950 to 2010. Analyses of coastline 

changes along the coasts of Spain were studied by 

(Pardo-Pascual et al., 2012; Puig et al., 2014; Aps et 

al., 2014). Landsat images taken between 1984 and 

2010 were used to automatically extract the coastline 

and perform change analysis. The mean positional 

error of coastlines ranged from 3.5 to 2.8 m, with an 

average of 0.7 m, remaining stable over time. Changes 

in the coastline along SW Spain’s coast were measured 

using aerial photographs taken between 1956 and 2010. 

The results indicate that the northern part of the 

Valdelagrana sand spit had an accretionary trend with 

stabilization in the past two decades.  
 

In Turkey, coastline and land-use/cover changes in 

the basin of Terkos Lake were examined using Landsat 

satellite images taken in 1986, 2001 and 2009. The 

maximum shoreline change measured was 280 m over 

a period of 23 years (Bayram et al., 2013). The 

Portuguese coasts were studied using Landsat images 

taken between 1984 and 2011. The resulting images 

showed a general trend of coastal erosion retreat of 3 

m/yr. The maximum rate was 10 m/yr. (Cenci et al., 

2013). However, in Holland, coastline change between 

1985 and 2010 using Landsat imagery was assessed. 

The results show accretion with an annual average 

ranging from 8 m to 9 m over 25 years (Do et al., 

2019). 
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Figure (9):  Coastline Change for the Cirebon Coast, after (Abdurrahman et al., 2021). 

 

 

 
 

Figure (10): Time series Coastline Change in Australia between 1988 and 2019, modified after (Bishop–Taylor et al., 2021), Subfigures 
show coastline advance and retreat techniques using machine leaning and other artificial intelligence methods. 
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Figure (11): Coastline Change using spatial and vertical profile-technique for SW France between 1999 and 2017, after (Chaumillon et al., 2019) 

 
 

 

 
 

Figure (12): DSAS-based spatial computational technique for coastline change along the West Coast of France between 1950 and 2010  
(Robin et al., 2019) 
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The Americas Coastline 

Geospatial technology provides a comprehensive and 

dynamic approach to coastline detection and analysis in 

the Americas. The integration of satellite imagery, 

LiDAR data, GIS, and other tools enables stakeholders 

to make informed decisions for sustainable coastal 

development, environmental conservation, and disaster 

resilience. Landsat time series taken between 1984 and 

2013 were used to measure continuous coastal changes 

in western Florida, showing that muddy coasts in 

western Florida eroded at an average annual rate of 

0.42±0.05 km²/year (Li and Gong, 2016). 
 

Coastal tidal wetlands along the northeastern Atlantic 

coast of the United States were analyzed from 1986 to 

2020 using Landsat imagery, and the results indicate 

that 12% changed, with vegetation decreasing by 2.6 

km2 per year (Yang et al., 2022). Changes in shoreline 

along the U.S. east coast salt marches indicated that 

49% of transects were retreating and 51% were 

advancing between 1933 and 2013 in the Georgia 

Coastal Ecosystems (Burns et al., 2021).  
 

Coastal Changes in Brazil and Colombia: A 

Historical Analysis 

The coastline of Brazil was mapped using Landsat 

imagery taken between 1984 and 2017 (Diniz et al., 

2020). Brazil’s coastal dynamics between 1988 and 

2019 were determined by tracing the spring high tide 

level, showing that the coast lost 80 km² but gained 

approximately 83 km² (Teixeira et al., 2021). 

Additionally, coastline changes between 1822 and 

2018 along Colombia’s northwest region were studied, 

using a map from 1822 and Google Earth imagery from 

2018. The results indicate that erosion in the Cartagena 

de Indias region was high (González Rodríguez et al., 

2021). 
 

African Coastline 

Studies of geomorphological changes along the Nile 

Delta coastline began using topographic maps in 1945. 

Landsat imagery has been used to map Egypt’s 

Mediterranean and Red Sea coastlines since 1973. 

Much of the focus of the earliest studies was for the 

purpose of understanding the impacts of the Aswan 

High Dam, which was completed in 1970. There was 

concern that because the AHD had a trap efficiency of 

99% and no sluice gates, all the sediment that formed 

the delta would be deposited behind the dam, and none 

would renourish the Mediterranean coastline. 

Therefore, erosion was expected at the two points 

where the Nile emptied into the Mediterranean Sea. 

Numerous studies using satellite remote sensing were 

used, especially after the construction of seawalls built 

along the Rosetta and Damietta promontories between 

1984 and 2001 accretion (Darwish et al., 2017). 
 

Estimation of the impact of sea level rise in Ghana 

for the period 1974 to 2015 was performed using 

Landsat images and aerial orthophotos. Sea level rose 

5.3 cm over 21 years. It accounts for 31% of the 

erosion rate of 2.0 m/yr. (Evadzi et al., 2017). Benin 

coastal dynamics were studied using imagery taken 

between 1988 and 2018. SPOT and Sentinel-2 imagery 

were used, and the coastal features were extracted 

using the high-water line as an indicator. The coastline 

feature dynamics were analyzed using the Digital 

Shoreline Analysis System extension in ArcGIS. The 

results show accretion on 80% of the country’s 

coastline. Between 2001 and 2012, 85% of the coast-

line was impacted by erosion, averaging 4.5 m/yr. 

From 1988 to 2018, accretion was observed along 68% 

of the coastline at an average rate of 0.9 meters per 

year. Conversely, erosion affected 31% of the 

coastline, occurring at an average rate of 0.7 meters per 

year. The majority of this erosion was concentrated 

near the mouth of the Bouche du Roy estuary (Balle et 

al., 2021). 
 

 Short-Term Coastline Change Analysis 

Table (2) summarizes the short-term coastline 

dynamics that have been researched in many locations 

across the world utilizing satellite remote and GIS 

techniques. The erosion/accretion pattern along the 

Damietta promontory shoreline in Egypt was establ-

ished using synthetic aperture radar interferometric 

(InSAR) data collected by European remote-sensing 

satellites (ERS-1 and ERS-2) between 1993 and 2000. 

The findings indicated that four locations along the 

promontory shoreline experienced crucial erosion, with 

average rates of -9, -39, -17, and -11 m/yr. (El-Asmar 

et al., 2014). To map the position of the shoreline and 

ascertain its movement, annual airborne LIDAR 

surveys were carried out along the Texas Gulf of 

Mexico shoreline between 2010 and 2012. The results 

indicate that during storm recovery, the shoreline 

advanced at 75% of the 11,783 monitoring sites and 

moved an average of 6.5 m seaward (Paine et al., 

2017). 
 

August 15, 2012, observed the collection of the NE 

Pacific Ocean, Coastal Morphology, and Shore Zone 

Classification from airborne scanning LIDAR Terrain 

Models throughout the central coast of British 

Columbia, Canada. With an overall accuracy of 90%, 

LIDAR algorithms recognize the kind of substrate 

based on morphological features for five substrate 

classes: rock, rock and sediment, gravel, sand, and mud 

(Nijland et al., 2017). In a macrotidal setting, the 

migration rates of two swash bars on a French ebb delta 

are investigated. The movement of the swash bar crests 

is calculated using a dataset of 12 LiDAR surveys 

conducted between 2011 and 2017. The results showed 

that bars moved 350–400 meters along the ebb tidal 

delta between 2011 and 2017 (Le Bas and Levoy 

Levoy, 2018). 

Using shipborne mobile LiDAR systems, it is far 

more effective to monitor coastal changes along 

Anmok Beach, Korea, from January 2016 (winter 

season) to September 2016 (summer season) than using 

terrestrial LiDAR systems for measurements without 

shadow zones in foreshore areas. The summer coastline 

moved approximately 19 meters to the landward side 

from the winter coastline in the northern half of the 

survey area, and it changed slightly to the seaward side 

in the southern part. In comparison to the winter 

coastline, the summer coastline moved approximately 
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31 m landward and approximately 39 m seaward (Kim 

et al., 2017). The muddy coastal zone in Sheyang city 

in Jiangsu Province, China, was imaged using many 

remote sensing techniques to determine coasts, with the 

assumption that shorelines are constant over short time 

periods (2014–2018). For artificial and muddy coastal 

locations, this approach could extract coastlines with 

high precision; however, it is not suitable for estuary 

areas (Wang et al., 2020). 

The Shatt Al-Arab Delta (northwestern Arab-

ian/Persian Gulf) had a short-term geoinformatics 

assessment from 1971 to 2016. The findings show 

considerable alterations in the locations along the 

shoreline in addition to in the rates of silt buildup and 

erosion. Furthermore, the mapping of coastal dynamics 

has demonstrated notable shoreline migration, with 

variations between the left and right banks of the river 

mouth and a greater intrusion of salinity up the channel 

(Al-Aesawi et al., 2020). 
 

Factors Influencing Coastal Change 

Natural Impacts of Coastline Dynamics 

Marine climate of extreme events of changes in the 

shoreline are affected by natural forces such as sea 

level rise, hurricanes, cyclones, storm surges, hurri-

canes, and climate change. The implications of marine 

climate impacts on shoreline morph dynamics have 

been discussed in several studies included in this 

research. Table 3 provides a summary of research on 

the effects of anthropogenic and natural changes to the 

coast. 

Waves and Currents 

Large banks of mud, supplied by the Amazon River, 

move along the coast of the Amazon and Orinoco 

Guianas as a result of waves and currents; greater wave 

energy can cause extensive and quick erosion of the 

shoreline. Ten very-high resolution (0.4 - 1.5 m) aerial 

photographs that were chosen from a catalog covering 

56 years, from 1955 to 2012, were used to examine 

multidecadal coastline alteration in the Guianas (Jolivet 

et al., 2019). 
 

Storm Surges 

Using aerial photos, a correlation between storms and 

coastline changes was conducted along the Gulf of 

Cadiz (SW Spain). The findings showed that erosion 

rates are detected along both research sites, with 

varying contributions from storminess. In exposed 

places, erosion rates are higher due to storm activity 

(Puig et al., 2014). Five terrestrial LiDAR measure-

ments were conducted in Poland between November 

2016 and April 2017 to assess the short-term cliff 

erosion linked to two significant storm surges and other 

minor storms in the town of Międzyzdroje. The first 

significant effect, according to the results, is a 

noticeable decrease in beach levels. a consequence of 

how frequently the storms occurred, the beach was 

unable to recuperate between the surges, which allowed 

the waves to directly hit the foot of the cliff (Terefenko 

et al., 2018). The Copenhagen coast is subjected to 

impact assessments and mitigation of coastal storm 

surges through the use of GIS modeling techniques 

with LIDAR-based DTM. A combined raster 

representing the inundation level necessary to flood 

each individual terrain cell was created from a range of 

inundation scenarios for the capital of Copenhagen, 

ranging from 1.0 to 3.9 m. The scenarios were 

developed using an ArcGIS Pro workflow by Esri 

(Balstrøm and Kirby, 2022). 
 

Cyclones, hurricanes and typhoons 

October 2016 experienced the impact of an 

extratropical hurricane in southern Brazil, generating 

speculation about a possible connection between this 

occurrence and recent destructive occurrences. An 

estimated coastline retraction balance of 5.91 meters 

has been associated with the cyclone that occurred 

between October 26 and 27, 2016, according to a 

comparison of shoreline position data from the July 

2016 image and the UAV (obtained in September and 

November 2016) (Albuquerque et al., 2018). To assess 

the consequences of Hurricanes Allen (1980) and Ivan 

(2004) on Worthing Beach, Barbados, the DSAS 

employed four historical aerial photographs (1973, 

1982, 1991, and 2004). The results showed that 

Hurricane Allen (1980) had an extremely quick 

accretion rate of 7.0 m/y. Following Hurricane Ivan's 

(2004) movement, over 110 meters of beachfront were 

removed while the hurricane continued to influence the 

island (Nagdee et al., 2020). 

Using airborne LIDAR databases, the results of 

Hurricane Michael, which devastated the USA on 

October 10, 2018, were assessed. The storm surge, 

which was approximately five meters high, wrecked 

the shoreline along the northwestern Florida coast. 

Hurricane Michael provides an outstanding opportunity 

to research how a powerful hurricane affects diverse 

coastal environments with different degrees of human 

development (Kelly and Gontz, 2020). Storm-Driven 

Morphodynamics of a Sandy Beach in Florida, The 

study examines the long-term morphological and 

morphological evolution of Casey Key in Sarasota 

County, Florida, as a consequence to significant storms 

and human activity using LIDAR data and historical 

Google Earth imagery. Although struck during the 

2004 hurricane season, when it is estimated that 

608,094 m3 of sand were lost and 50 m of retreat 

occurred in certain locations that threaten homes and 

beach development, Casey Key has generally shown 

resilience to erosion, especially an 8-km-long center 

portion (Jose and Carlin, 2022). 
 

Sea-Level Rise Due to Climate Change 

Coastline recession is caused by of sea level rise 

driven by climate change and has emerged as one of 

the greatest challenges threatening our world. The 

projected future beach destruction along Thailand's 

coasts relative to the 1986–2005 reference period is 

evaluated using the Bruun rule and the Coupled Model 

Comparison Project, Phase 5 (CMIP5) sea level rise 

scenarios for 2081-2100. 

The national beach loss rates for RCP2.6, RCP4.5, 

RCP6.0, and RCP8.5 are estimated to increase to 

45.8%, 55.0%, 56.9%, and 71.8% in the future, 

respectively. RCP2.6 and RCP8.5, for example, will 

lead to sandy beaches to disappear throughout 23 of the 
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51 zones (Ritphring et al., 2018). The susceptibility of 

Korea's coastal regions to disasters has been assessed 

in order to manage and increase the importance of 

these regions effectively. These are included in the 

Coastal Disaster Vulnerability Index (CDVI) along 

with resilience. The exposure indicators included 

typhoons, surges, waves, tides, SLR, and coastal 

erosion (Kang et al., 2018). 
 

Coastal Vulnerability Index 

The South Sinai coastline's vulnerability to climate 

change is calculated by the coastal vulnerability index 

(CVI), which takes into consideration the following 

shoreline characteristics: coastal slope, coastal 

geomorphology, fauna/flora, and socioeconomic comp-

onents. To determine the essential characteristics of the 

coast in this study area, GIS and remote sensing 

analyses were utilized. The 635 km long coast is 

exposed to high and very high coastal susceptibility to 

climate change, according to the results, and global 

warming could make the region's biological suffering 

worse (Hereher, 2015). This study assesses the 

susceptibility of two regions of the Rio de Janeiro 

coastline (SE Brazil) to coastal erosion and flooding: 

the 20-kilometer Ma-cumba/Recreio-Barra beachfront 

and the 40-kilometer Marambaia barrier island (MBI), 

which is largely uninhabited and at risk due to sea level 

rise, wave climate, and shoreline mobility. Carvalho 

and Guerra (2020) determined that Marambaia Barrier 

Island exhibits a significant degree of vulnerability. 
 

Anthropogenic Impacts of Coastline Dynamics 

The coastline change rate can be influenced by 

human activities such as river dams, coastal construc-

tions, and changes in land use and cover (Geriesh, et 

al., 2015). Between 1945 and 2015, the Nile Delta 

coast of Egypt experi-enced geomorphological change. 

Landsat imagery and historical topographic maps were 

used to analyze changes in the rates of erosion and 

coastal accretion prior to and during the construction of 

the Aswan High Dam between 1964 and 1970. Along 

the Nile delta promontories and major cities between 

1984 and 2001, the study additionally investigated the 

accretion and erosion of the coastline prior to and 

following the construction of coastal structures (sea 

walls, groins, jetties, and detached breakwaters) 

(Darwish et al., 2017). Brazil's coastal vulnerability is 

increased by human pressure along Uruguay's coast-

line, which is manifested in the construction of coastal 

structures and a high population density, especially at 

the Macumba/Recreio-Barra beaches (Carvalho and 

Guerra, 2020). Using LIDAR data collected in 2011, 

the coastline position along detached breakwaters along 

the Portuguese West Coast was identified. The results 

indicated that in the event that no additional actions are 

taken in the Vagueira region, the entire coastal stretch 

will continue to erode, which, depending on the avail-

ability of sediment, may have severe repercussions in 

some places (Araújo et al., 2014). 
 

Coastline extraction and mapping from Remote 

Sensing Data 

The digital extraction of coastlines from multicourse 

satellite remote sensing images is crucial due to the 

variation in the spatial and spectral characteristics of 

imagery and its related sensors. The uncertainty and 

positional accuracy of the extracted coastlines from 

medium-resolution imagery, such as Landsat, Sentinel, 

and ASTER, are lower than those from high-resolution 

satellite imagery, such as IKONOS, QuickBird, 

GeoEye, and RapidEye. Moreover, the use of spectral 

indices, image segmentation techniques, and deep 

learning algorithms will give a higher accuracy result 

than manual delineation 

 

DISSCUSION 

 
Coastal dynamics have been studied using aerial 

photography since the 1930s (Ford, 2013; Jaramillo et 

al., 2020). A great deal of aerial photography of many 

coasts in the world was taken during World War II. 

Unfortunately, if they are not digitized, many of the 

photographs and negatives deteriorate with time and 

are no longer useful for high accuracy-requiring tasks. 

When film-based photographs moved away from a 

nitrate base to a more chemically stable base, historical 

photographs lasted longer. Any long-term study of a 

coast should start with aerial photography (Chaaban et 

al., 2012; Stéphan et al., 2019). 

The availability, repetitiveness and affordability of 

medium spatial resolution satellites such as Landsat, 

SPOT and Sentinel make their imagery products an 

attractive choice for studying coastline dynamics 

(Carvalho and Guerra 2020; Balle et al., 2021). 

Landsat was launched in 1972, taking it the satellite 

with the longest record of continuous imagery. Landsat 

imagery was used in coastal studies on all the world’s 

continents. Higher spatial resolution satellite imagery, 

such as Sentinel, QuickBird, IKONOS, and GeoEye 

imagery, has also been used for coastal change 

assessments around the globe (Song et al., 2020; 

DaSilva et al., 2021; Yun et al., 2021; Dai et al., 2019; 

Nijland et al., 2019). 
 

Drone-based aerial imagery was used in Brazil, 

South Korea and the USA (Albuquerque et al., 2018; 

Jun et al., 2018). Aerial, terrestrial, and mobile LiDAR 

surveys were used along the US, Australian and Polish 

coasts. Unfortunately, drones are illegal in many 

countries and restricted in others. In addition, some 

navigation technology available to drone users in the 

USA cannot be exported due to the International Treaty 

on Arms Regulations (ITAR) regulations (Luque et al., 

2012; Jun et al., 2018). 
 

Remote sensing has achieved a critical role in 

mapping and monitoring coastal dynamics. What 

started out as simply tracing the coastline from aerial 

photographs now features automatic extraction of the 

coastline using very high-resolution satellite imagery 

and even higher resolution drone-based imagery 

(Hossain et al., 2021). While some of the imagery, 

such as Google Earth, Sentinel and Landsat, is free to 

the public, much of the very high-resolution imagery is 

relatively expensive for less developed countries. Many 

of these countries, such as Egypt and Bangladesh, are 

located in low-lying deltas and are thus subject to large 
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land losses due to sea level rise. It is critical that they 

have access to the highest possible resolution imagery 

so that they can plan for the future. 

This study indicated that the global trends of coastal 

environment studies using remote sensing technology 

and GIS tools refer to an increase in utilizing geospatial 

artificial intelligence (GeoAI), including its advanced 

techniques of machine learning (ML) and deep learning 

(DL), which have been widely used for coastal 

dynamic analysis, assessment and future prediction in 

recent years beginning in 2018 (Seale et al., 2022). The 

use of mobile ship-based terrestrial LiDAR, aerial and 

space LiDAR technologies, land video remote sensing 

monitoring systems, high-resolution optical satellite 

imagery, aerial photogrammetry, and radar remote 

sensing has dramatically increased for coastal dynamic 

mapping, modeling and marine hazard assessment. 

Coastline dynamic assessment is essential for 

integrated coastal zone management as well as coastal 

planning for sustainable development. Advanced rem-

ote sensing imaging systems such as optical, radar, 

hyperspectral, airborne LiDAR, and drone-based UAV 

imagery have become essential for accurate coastal 

studies to support spatial decision systems. It is recom-

mended to conduct a comprehensive coastal dynamic 

assessment using remote sensing, geographic inform-

ation systems (GIS), and artificial intelligence (AI) 

technologies. 
 

CONCLUSION 

 

The examination of global trends in coastline 

dynamics monitoring has demonstrated that the integ-

ration of satellite remote sensing with GIS has 

markedly improved the precision and effectiveness of 

tracking coastline changes. Advances in satellite 

technology, including enhanced spatial and temporal 

resolution, have permitted more detailed and frequent 

observations, facilitating superior detection and 

analysis of coastal dynamics. Satellite remote sensing 

offers extensive data coverage, which is indispensable 

for investigating vast and remote coastal regions. This 

information is vital for comprehending long-term 

trends and patterns in coastline movement and for 

making well-informed decisions regarding coastal 

management. The methodologies reviewed are appli-

cable across various disciplines, including environm-

ental monitoring, urban planning, disaster management, 

and climate change studies. This interdisciplinary 

utility underscores the necessity for continued 

investment in satellite and GIS technologies. The 

reviewed studies indicate a strong correlation between 

climate change and coastline dynamics, with rising sea 

levels, increased frequency of extreme weather events, 

and human activities identified as key drivers of coastal 

erosion and accretion. Remote sensing and GIS are 

essential tools for quantifying these impacts and 

developing mitigation strategies. The ability to predict 

and visualize changes aids in formulating effective 

strategies for coastal protection, habitat conservation, 

and sustainable development. The review highlights the 

importance of global collaboration and data sharing to 

comprehensively address coastline dynamics. Future 

research should focus on developing more sophisti-

cated algorithms, enhancing data fusion techniques, 

and ensuring the accessibility and interoperability of 

data across platforms. In conclusion, the rise of GeoAI 

for analyzing coastline dynamics can provide precise, 

timely, and comprehensive data, which is critical for 

addressing the challenges posed by natural and 

anthropogenic factors. Continued advancements and 

collaborative efforts are essential to fully harness these 

technologies for sustainable coastal management and 

resilience against climate change. 
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يكيات خط الساحل باستخدام الاستشعار من بعد بالأقمار الصناعية ونظم المعلومات الجغرافية: رَصد دينام

 مراجعة تحليلية للاتجاهات العالمية
 

  كمال سروجي درويش

 مصر قسم الجغرافيا ،كلية الآداب،جامعة المنيا،
 

 الملخص العربـــــي
 

 

غرافية في وضع حلول للعديد من المشكلات الطبيعية على سطح الأرض، تساهم تكنولوجيا الاستشعار من بعد ونظم المعلومات الج

وجية في خط الساحل الناتجة عن تأثير العديد من العوامل الطبيعية والبشرية أحد هذه الظاهرات المهمة. الجيومورفول وتعد ظاهرة التغير ات

اع وتفيد دراسة خطوط السواحل في تحديد نطاقات أخطار التعرية الساحلية وتقدير معدلات تراجع الشواطئ وعلاقتها بالتغيرات المناخية وارتف

نشطة البشرية. تهدف هذه الدراسة الى تحليل الاتجاه العام والتحديدات في استخدام تقنيات الاستشعار من منسوب سطح البحر بالإضافة إلى الأ

بعد عبر الأقمار الصناعية ونظم المعلومات الجغرافية في دراسات التغيرات الساحلية على المستوى العالمي بالاعتماد على تحليل ودراسة 

. ويتضح من النتائج أن هناك تزايد كبير في 2022وحتى  2012مية العالمية المفهرسة خلال الفترة من الدراسات المنشورة في الدوريات العل

جيوآي( في الاستخلاص  -إيكونوس  –كويك بيرد  –سينتينال  –سبوت  –الاعتماد على مرئيات الأقمار الصناعية المختلفة المصدر )لاندسات 

نظم المعلومات الجغرافية، كما تم الاعتماد مؤخرا على تقنيات المسح الجوي بالليدار واستخدام  الآلي لخطوط الشواطئ وتحليلها ونمذجتها في

ومات المركبات غير المأهولة وكاميرات الرصد الأرضي في المرقبة عالية الدقة للتغيرات الساحلية. كما بدأ التطور المذهل في علوم نظم المعل

  لاصطناعي والتعلم العميق في برمجيات نظم المعلومات الجغرافية.الجغرافية بعد دمج لوغاريتمات الذكاء ا
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